Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T17:43:31.138Z Has data issue: false hasContentIssue false

Influence of Substrate Temperature on the Structure of Tin-Films

Published online by Cambridge University Press:  28 February 2011

J. M. Molarius
Affiliation:
Helsinki University of Technology, Dept.of Mining and Metallurgy, Lab.of Metal Working and Heat Treatment, Vuorimiehentie 2 A, 02150 Espoo, Finland.
A. S. Korhonen
Affiliation:
Helsinki University of Technology, Dept.of Mining and Metallurgy, Lab.of Metal Working and Heat Treatment, Vuorimiehentie 2 A, 02150 Espoo, Finland.
E. Erola
Affiliation:
Helsinki University of Technology, Dept.of Mining and Metallurgy, Lab.of Metal Working and Heat Treatment, Vuorimiehentie 2 A, 02150 Espoo, Finland.
E. Nykanen
Affiliation:
Helsinki University of Technology, Dept.of Mining and Metallurgy, Lab.of Metal Working and Heat Treatment, Vuorimiehentie 2 A, 02150 Espoo, Finland.
Get access

Abstract

Three series of Ti-N films with varying nitrogen contents from about 8 to 52 at.% N were deposited by triode ion plating at temperatures of 773, 623 and 373 K, respectively.Marked changes in the structures of the films with decreasing temperature were observed by x-ray diffraction.Stoichiometric δ-TiN which showed (220) preferred orientation at 773 K changed to (111) at lower temperatures.At intermediate nitrogen concentrations α-Ti (002) decreased and a new ε-Ti2N (002) developed with decreasing temperature.Very smooth and dense films could be produced at the lower temperatures.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Molarius, J.M., Korhonen, A.S. and Ristolainen, E.O., J.Vac.Sci.Technol. A3, 2419 (1985).Google Scholar
2. Moll, E. and Daxinter, H., U.S.Patent 4 197 175, Apr.8, 1980.Google Scholar
3. Nakamura, K., Inagaawa, K., Tsuruoka, K. and Komiya, S., Thin Solid Films 40, 155 (1977).Google Scholar
4. Snaper, A., U.S.Patent 3 625 848, Dec.7.1971.Google Scholar
5. Dorodnov, A.M., Sov.Phys.Tech.Phys. 23, 1058 (1978).Google Scholar
6. Münz, W.D., Hoffmann, D. and Hartig, K., Thin Solid Films 96, 79 (1982).Google Scholar
7. Wittmer, M., J.Vac.Sci.Technol. A3, 1797 (1985).Google Scholar
8. Ernsberger, C., Nickerson, J., MiTler, A. and Banks, D., J.Vac.Sci.Technol. A3, 2303 (1985).CrossRefGoogle Scholar
9. Valkonie-, E., Karlsson, T., Karlsson, B. and Johansson, B.O., in Thin Film Technologies (ed.by Jacobsson, J.R.), Proc.SPIE 401 (1983), 375381.Google Scholar
10. Ting, C.Y., J.Vac.Sci.Technol. 21, 14 (1982).CrossRefGoogle Scholar
11. Salmenoja, K., Korhonen, A.S. and Sulonen, M.-S., J.Vac.Sci.Technol.A 3, 2364 (1985).Google Scholar
12. Anttila, A., Räisänen, J. and Keinonen, J., Appl.Phys.Lett. 42, 498 (1983).CrossRefGoogle Scholar
13. Asplund, M., Korhonen, A.S., Molarius, J.M., Nykanen, E. and Sulonen, M.S., Materials Research Society Symposia Proc. Vol. 54, in press.Google Scholar
14. Anttila, A., Bister, M., Fontell, A. and Winterbon, K.B., Radiat.Eff. 33, 13 (1977).Google Scholar
15. Igasaki, Y., Mitsuhashi, H., Azuma, K. and Muto, T., Jap.J.of Applied Physics 17, 85 (1978).CrossRefGoogle Scholar
16. Hibbs, M.K., Sundgren, J.-E., Jacobsson, B.E. and Johansson, B.-O., Thin Solid Films 107, 149 (1983).Google Scholar
17. Gabriel, H.M. and Kloos, K.H., Thin Solid Films, 118 (1984).Google Scholar
18. Ishida, K., Matsui, J., Kamejima, T. and Sakuma, I., Phys.Stat.Sol. (a) 31, 255 (1975).Google Scholar
19. Grovenor, C.R.M., Hentzell, H.T.G. and Smith, D.A., Acta Met.32 (1984).Google Scholar
20. Movchan, B.A. and Demchishin, A.V., Phys.Met.Metallogr.28 (1969).Google Scholar
21. Thornton, J.A., Ann.Rev.Mater.Sci.7 (1977).Google Scholar