Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T02:35:44.892Z Has data issue: false hasContentIssue false

Influence of Processing Parameters on Microstructure of Pulsed Laser Deposited Au Thin Films

Published online by Cambridge University Press:  26 February 2011

Andreas Kulovits
Affiliation:
[email protected] of PittsburghDept. of Mechanical Engineering and Materials Science848 Benedum HallPittsburgh PA 15261United States
John Leonard
Affiliation:
[email protected], University of Pittsburgh, Dept. of Mechanical Engineering and Materials Science, 848 Benedum Hall, Pittsburgh, PA, 15261, United States
Jorg Wiezorek
Affiliation:
[email protected], University of Pittsburgh, Dept. of Mechanical Engineering and Materials Science, 848 Benedum Hall, Pittsburgh, PA, 15261, United States
Get access

Abstract

It has long been recognized that thin film polycrystalline microstructures are determined by the thermodynamics and kinetics associated with physical vapor deposition, but it is quite process dependent and not easily quantified. We have examined the microstructure in polycrystalline Au films obtained by pulse laser deposition (PLD) under various conditions and interpret the results in terms of three fundamental parameters common to all physical vapor deposition: Flux kinetic energy, substrate temperature, and deposition rate. With this model, it is predicted that nanocrystalline films are formed in the limits of low temperature, flux, and high deposition rate. The deposited films are analyzed with X-ray diffraction and SEM to determine texture and grain morphology, which are found to fit well within the process maps.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Levlin, M., Laakso, A., Niemi, H.E.M. and Hautojarvi, P., Appl. Surf. Sci. 115, 31 (1997).Google Scholar
2. Tai, K.L., Turner, P.A. and Bacon, D.D., J. Vac. Sci. Technol. 6, 687 (1969).Google Scholar
3. Mancini, N. and Rimini, E., Surf. Sci. 22, 357 (1970).Google Scholar
4. Kakati, K.K. and Wilman, H., J. Phys. D 6, 1307 (1973).Google Scholar
5. Adamov, M., Perovic, B. and Nenadovic, T., Thin Solid Films 24, 89 (1974).Google Scholar
6. White, J.R., Thin Solid Films 22, 23 (1974).Google Scholar
7. Hummel, R.E., DeHoff, R.T., Matts-Goho, S. and Goho, W.M., Thin Solid Films 78, 1 (1981).Google Scholar
8. Zei, M.S., Nakai, Y., Lehmpeuhl, G. and Kolb, D.M., J. Electroanal. Chem 150, 201 (1983).Google Scholar
9. Krim, J., Thin Solid Films 137, 297 (1986).Google Scholar
10. Wong, C.C., Smith, H.I. and Thompson, C.V., Appl. Phys. Lett. 48, 335 (1986).Google Scholar
11. Jach, T., Hembree, G. and Holdeman, L.B., Thin Solid Films 187, 133 (1990).Google Scholar
12. Golan, Y., Margulis, L. and Rubinstein, I., Surf. Sci. 264, 312 (1992).Google Scholar
13. Hwang, J. and Dubson, M.A., J. Appl. Phys. 72, 1852 (1992).Google Scholar
14. Aguilar, M., Oliva, A.I., Quintana, P. and Pena, J.L., Surf. Sci. 380, 91 (1997).Google Scholar
15. Stamou, D., Gourdon, D., Liley, M., Burnham, N.A., Kulik, A., Vogel, H. and Duschl, C., Langmuir 13, 2425 (1997).Google Scholar
16. Everitt, D.L., Miller, W.J.W., Abbott, N.L. and Zhu, X.D., Phys. Rev. B 62, R4833 (2000).Google Scholar
17. Semaltianos, N.G. and Wilson, E.G., Thin Solid Films 366, 111 (2000).Google Scholar
18. Emery, R.D. and Povirk, G.L., Acta Mater. 51, 2079 (2003).Google Scholar
19. Rost, M.J., Quist, D.A. and Frenken, J.W.M., Phys. Rev. Lett. 91, 026101 (2003).Google Scholar
20. Mattox, D.M., J. Appl. Phys. 37, 3613 (1966).Google Scholar
21. Schell, N., Jensen, T., Petersen, J.H., Andreasen, K.P., Bottiger, J. and Chevallier, J., Thin Solid Films 441, 96 (2003).Google Scholar
22. Kwon, J.Y., Yoon, T.S., Kim, K.B. and Min, S.H., J. Appl. Phys. 93, 3270 (2003).Google Scholar
23. Adamov, M., Perovic, B. and Nenadovic, T., Thin Solid Films 24, 89 (1974).Google Scholar
24. Scheibe, H.J., Gorbunov, A.A., Baranova, G.K., Klassen, N.V., Konov, V.I., Kulakov, M.P., Pompe, W., Prokhorov, A.M. and Weiss, H.J., Thin Solid Films 189, 283 (1990).Google Scholar
25. Irissou, E., Drogoff, B. Le, Chaker, M. and Guay, D., J. Appl. Phys. 94, 4796 (2003).Google Scholar
26. Irissou, E., Drogoff, B. Le, Chaker, M. and Guay, D., Appl. Phys. Lett. 80, 1716 (2002).Google Scholar
27. Irissou, E., Drogoff, B. Le, Chaker, M., Trudeau, M. and Guay, D., J. Mater. Res. 19, 950 (2004).Google Scholar
28. Barna, P.B. and Adamik, M., Thin Solid Films 317, 27 (1998).Google Scholar
29. Thompson, C.V., Ann. Rev. Mater. Sci. 30, 159 (2000).Google Scholar
30. Rossnagel, S., in Handbook of Thin-Film Deposition Processes and Techniques (K. Seshan ed.) Ch. 8, 319 (2002)Google Scholar
31. Franghiadakis, Y., Fotakis, C. and Tzanetakis, P., Appl. Phys. A 68, 391 (1999).Google Scholar
32. Chrisey, D.B., Hubler, G.K., Pulsed laser deposition of thin films, Wiley (1994).Google Scholar