Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:20:45.187Z Has data issue: false hasContentIssue false

Influence of Post-Deposition Annealing on Lattice Strain, Electrical Transport and Magnetic Properties in Epitaxial La0.8Ca0.2MnO3 CMR Films

Published online by Cambridge University Press:  10 February 2011

T. K. Nath
Affiliation:
Department of Mechanical Eng. and Materials Science, Duke University, Durham, NC 27708
R. A. Rao
Affiliation:
Department of Mechanical Eng. and Materials Science, Duke University, Durham, NC 27708
D. Lavric
Affiliation:
Department of Mechanical Eng. and Materials Science, Duke University, Durham, NC 27708
C. B. Eom
Affiliation:
Department of Mechanical Eng. and Materials Science, Duke University, Durham, NC 27708
Get access

Abstract

The effect of annealing on 3-dimensional lattice strain, crystallographic domain structure, magnetic and electrical properties of both 250 Å and 4000 Å thick epitaxial La0.8Ca0.2MnO3 (LCMO(x=0.2)) thin films grown on (001) LaAlO3 substrates have been studied. While short annealing time (∼2hrs. at 950 °C in oxygen of 1 atm. pressure) leads to anomalous increase of the peak temperature (Tp) and Curie temperature (Tc) above room temperature and that of the bulk material, longer annealing time (∼10 hrs.) restores the Tp and Tc to almost the same values as that of the as-grown films. Furthermore, as the annealing time is increased, the lattice strain relaxes with film's lattice parameter approaching the bulk value. In-plane and out-of-plane lattice parameters and strain states of the as-grown and annealed films were measured directly using normal and grazing incidence x-ray diffraction. A clear correlation is observed between Tp and perovskite unit cell volume for both the films. Tp is found to increase with the decrease of perovskite unit cell volume. This is attributed to the enhancement of overlap between Mn d orbitals and oxygen p orbitals leading to increased bandwidth and conductivity. Crystalline quality of the films as determined by the full width at half maximum (FWHM) of the x-ray rocking curves, improves with the annealing time. This work highlights the importance of controlling the 3-dimensional lattice strain for optimizing the properties of CMR films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jin, I. S., Tiefel, T.H., McCormack, M., Fastnacht, R.A., Ramesh, R., and Chen, L.H., Science 264, 413 (1994); S. Jin, T.H. Tiefel, M. McCormack, H.M. OBryan, L.H. Chen, R. Ramesh, and D. Schurig, Appl. Phvs. Lett. 67, 557 (1995).10.1126/science.264.5157.413Google Scholar
2. Simond, J.L., Phys. Today, 48, 26 (1995); G.A. Prince, ibid. 48, 58 (1995).Google Scholar
3. Wosik, J., Xie, L.-M., Strikovski, M., Miller, J.H., and Przyslupski, P., Appl. Phys. Lett. 74, 750 (1999).10.1063/1.123191Google Scholar
4. Chen, L.H., Jin, S., Tiefel, T.H., Ramesh, R., and Schurig, D., IEEE Transactions on Magnetics 66 3912 (1995).10.1109/20.489814Google Scholar
5. Suzuki, Y., Hwang, H.Y., Cheong, S.-W., and Dover, R.B. van, Appl. Phys. Lett. 71. 140 (1997).10.1063/1.119454Google Scholar
6. O'Donnell, J., Rzchowski, M.S., Eckstein, J.N. and Bozovic, I., Appl. Phys. Lett. 72, 1775 (1998).10.1063/1.121181Google Scholar
7. Kwon, C., Robson, M.C., Kim, K.-C., Gu, J.Y., Lofland, S.E., Bhagat, S.M., Trajanovic, Z., Rajeswari, M., Ghosh, K., Shreekala, R., Greene, R.L., Ramesh, R., J. Magn. Magn. Mater. 172, 229 (1997).10.1016/S0304-8853(97)00058-9Google Scholar
8. Zeng, X.T. and Wong, H.K., IEEE Transactions on Magnetics, 66 3910 (1995).10.1109/20.489813Google Scholar
9. Hundley, M.F., Hawley, M., Heffner, R.H., Jia, Q X., Neumier, J.J., Tesmer, J., Thompson, J.D., and Wu, X.D., Appl. Phys. Lett. 67, 860 (1995).10.1063/1.115529Google Scholar
10. Shreekala, R., Rajeswari, M., Srivastava, R.C., Ghosh, K., Goyal, A., Srinivasu, V.V., Lofland, S.E., Bhagat, S.M., Downes, M., Sharma, R.P., Ogale, S.B., Greene, R.L., Ramesh, R., Venkatesan, T., Rao, R.A., and Eom, C.B. (preprint).Google Scholar
11. Eom, C.B., Cava, R.J., Fleming, R.M., Philips, J.M., Dover, R.B. van, Marshall, J.H., Hsu, J.W.P., Krajewski, J.J., and Peck, W.F., Jr., Science 258, 1766 (1992).10.1126/science.258.5089.1766Google Scholar
12. Rao, R.A., Lavric, D., Nath, T.K., Eom, C.B., Wu, L., and Tsui, F., Appl. Phys. Lett. 66 3294 (1998).10.1063/1.122749Google Scholar
13. Nath, T.K., Rao, R.A., Lavric, D., Eom, C.B., Wu, L., and Tsui, F., Appl. Phys. Lett. 74, 1615 (1999).10.1063/1.123634Google Scholar
14. Worledge, D.C., Mieville, L., and Geballe, T.H., J. Appl. Phys. 83, 5913 (1998).10.1063/1.367454Google Scholar
15. Moritomo, Y., Asamitsu, A., and Tokura, Y., Phys. Rev. B 51, 16491 (1996).Google Scholar
16. Thomas, K.A., Silva, P.S.I.P.N. de, Cohen, L.F., Hossain, A., Rajeswari, M., Venkatesan, T., Hiskes, R., MacManus-Driscoll, J.L., J. Appl. Phys. 84, 3939 (1998).10.1063/1.368572Google Scholar