Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T23:40:00.183Z Has data issue: false hasContentIssue false

Influence of Phase Stability on Radiation Damage Properties: Plutonium-Gallium Alloys

Published online by Cambridge University Press:  01 February 2011

Steve Valone
Affiliation:
[email protected], Los Alamos National Laboratory, Materials Science and Technology Division, Group MST-8, Mail Stop G755, Los Alamos, NM, NM, 87545, United States, 505-667-2067, 505-667-8021
Michael I. Baskes
Affiliation:
[email protected], Los Alamos National Laboratory, Materials Science and Technology Division, Group MST-8, Mail Stop G755, Los Alamos, NM, NM, 87545, United States
Blas P. Uberuaga
Affiliation:
[email protected], Los Alamos National Laboratory, Materials Science and Technology Division, Group MST-8, Mail Stop G755, Los Alamos, NM, NM, 87545, United States
Richard L. Martin
Affiliation:
[email protected], Los Alamos National Laboratory, Theoretical Division, Group T-12, Mail Stop B268, Los Alamos, NM, NM, 87545, United States
Alison Kubota
Affiliation:
[email protected], Lawrence Livermore National Laboratory, Livermore, CA, CA, 94550, United States
Wilhelm G. Wolfer
Affiliation:
[email protected], Lawrence Livermore National Laboratory, Livermore, CA, CA, 94550, United States
Get access

Abstract

Modeling cascade and fission damage evolution of actinide materials of all kinds is essential for understanding their aging characteristics. As an example of how exotic some of the damage evolution behavior can be, plutonium-gallium (Pu-Ga) alloys in the δ-phase (fcc lattices) are explored. Aging emanates from the wide variety of spontaneous decay and fission products that, in the case of the Pu, are such species as helium (He) and uranium, among others, as well as interstitials, and vacancies. To aid in our understanding, the modified embedded atom method (MEAM) formalism is applied to the Pu-Ga-He system. The behavior of defects in the fcc (δ) phase of Pu-based materials is strongly influenced by the metastability of this phase. The influence of this metastability on minimum displacement threshold energy, point defect characteristics and He bubbles is delineated. The roles of short-range ordering and transformations of voids into stacking fault tetrahedra in the aging process are also examined.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schwartz, A. J., Wall, M. G., Zocco, T. G., and Wolfer, W. G., Philos. Mag. 85, 479 (2005) and references therein.Google Scholar
2. Arsenlis, A., Wolfer, W. G., and Schwartz, A. J., J. Nucl. Mater. 336, 31 (2005).Google Scholar
3. Kassner, M.E. and Peterson, D.E., Bull. Alloy Phase Diagrams, 10, 459 (1989).Google Scholar
4. Peterson, D.E. and Kassner, M.E., Bull. Alloy Diagrams, 2, 1843 (1990).Google Scholar
5. Wills, J. M. and Eriksson, O., in Challenges in Plutonium Science, ed. by Cooper, N. G. (Los Alamos National Laboratory, Los Alamos, NM, 2000), Vol. 1, pp. 128151.Google Scholar
6. Daw, M. S. and Baskes, M. I., Phys. Rev. B 29, 6443 (1984).Google Scholar
7. Daw, M. S., Foiles, S. M., and Baskes, M. I., Mater. Sci. Rep. 9, 251 (1993).Google Scholar
8. Baskes, M. I., Phys. Rev. B 46, 2727 (1992).Google Scholar
9. Baskes, M. I., Modell. Simul. Mater. Sci. Eng. 5, 149 (1997).Google Scholar
10. Swadener, J. G., Baskes, M. I., and Nastasi, M., Phys. Rev. Lett. 89, 085503 (2002).10.1103/PhysRevLett.89.085503Google Scholar
11. Ravelo, R. and Baskes, M., Phys. Rev. Lett. 79, 2482 (1997).Google Scholar
12. Baskes, M. I., Phys. Rev. Lett. 59, 2666 (1987).Google Scholar
13. Baskes, M. I., Phys. Rev. B 62, 15532 (2000); O. J. Wick in Plutonium Handbook: A Guide to the Technology, (The American Nuclear Society, La Grange Park, IL, 1980), Vols. I and II.Google Scholar
14. Baskes, M. I., Chen, S. P., and Cherne, F. J., Phys. Rev. B 66, 104107 (2002); E. B. Amitin, Y. F. Minenkov, O. A. Nabutovskaya, I. E. Paukov, S. I. Sokolova, J. Chem. Thermodynamics 16, 431 (1984); E. I. Geshko, V. P. Mikhal'chenko, B. M. Sharlai, Sov. Phys. Solid State 14 (6), 1554 (1972).Google Scholar
15. Baskes, M. I., Muralidharan, K., Stan, M., Valone, S. M., and Cherne, F. J., J. Metals 55, 41 (2003); F. H. Ellinger, C. C. Land, V. O. Strebing, J. Nucl. Mater. 12, 226 (1964); V. V. Akhachinsky, L. M. Kopytin, Heats of Formation of Intermetallic Compounds of Plutonium with Gallium and Tin, Thermodynamics of Nuclear Materials, Vienna (IAEA, 1968).Google Scholar
16. Baskes, M. I., Lawson, A. C., and Valone, S. M., Phys. Rev. B 72, 014129 (2005).Google Scholar
17. Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping Power of Ions in Solids, (Pergamon Press, 1985).Google Scholar
18. Valone, S. M. and Baskes, M. I., J. Comp.-Aid. Mater. Design 14, 357 (2007).Google Scholar
19.http://asc.llnl.gov/computing_resources/bluegenel/bluegene_home.html.Google Scholar
20.http://computing.lanl.gov/uploads/Coyote_Intro.pdf.Google Scholar
21. Kubota, A., Wolfer, W. G., Valone, S. M., and Baskes, M. I., J. Comput.-Aid. Mater. Design 14, 367 (2007).Google Scholar
22. Beazley, D. M. and Lomdahl, P. S., Comput. Phys. 11, 230 (1997).Google Scholar
23. Valone, S. M., Baskes, M. I., Stan, M., Mitchell, T. E., Lawson, A. C., and Sickafus, K. E., J. Nucl. Mater. 324, 41 (2004).Google Scholar
24. Valone, S. M., Baskes, M. I., and Martin, R. L., Phys. Rev. B 73, 214209 (2006) and references therein.Google Scholar
25. Baskes, M. I., Hu, S. Y., Valone, S. M., Wang, G. F., and Lawson, A. C., J. Comput.-Aid. Mater. Design 14, 379 (2007).Google Scholar
26. Uberuaga, B. P., Hoagland, R. G., Voter, A. F., and Valone, S. M., Phys. Rev. Lett. 99, 135501 (2007) and references therein.Google Scholar
27. Faure, Ph., Deslandes, B., Bazin, D., Tailland, C., Doukhan, R., Fournier, J. M., and Falanga, A., J. Alloys Comp. 244, 131 (1996).Google Scholar
28. Robert, G., Colinet, C., Siberchicot, B., and Pasturel, A., Modell. Simul. Mater. Sci. Eng. 12, 693 (2004).Google Scholar
29. Conradson, S., Los Alamos Sci. 26, 356 (2006).Google Scholar
30. Wolfer, W.G., Oudot, B., Baclet, N., J. Nucl. Mater. 359, 185 (2006).Google Scholar
31. Harbur, D. R., J. Alloy Comp. Special Issue Paper: Plutonium Futures - The Science, in press (2006).Google Scholar
32. Blobaum, K. J. M., Krenn, C. R, Wall, M. A., Massalski, T. B., and Schwartz, A. J., Proc. Mater. Res. Soc. Symp. 893, 169 (2006).Google Scholar