Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T15:29:44.622Z Has data issue: false hasContentIssue false

Influence of Oxide Nanoparticles of Fe, Al and Si on the Sintered Magnesia for the Production of Refractory Material to Be Used in Secondary Ladle Metallurgy

Published online by Cambridge University Press:  31 January 2012

Cristian Gómez
Affiliation:
Programa Doctoral en Ingeniería de Materiales, Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, México, C.P. 66451
Tushar.K. Das
Affiliation:
Programa Doctoral en Ingeniería de Materiales, Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, México, C.P. 66451
Sadasivan Shaji
Affiliation:
Programa Doctoral en Ingeniería de Materiales, Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, México, C.P. 66451
Edén A. Rodríguez
Affiliation:
Programa Doctoral en Ingeniería de Materiales, Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, México, C.P. 66451
Ana M. Guzmán
Affiliation:
Programa Doctoral en Ingeniería de Materiales, Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, México, C.P. 66451
Alan Castillo
Affiliation:
Programa Doctoral en Ingeniería de Materiales, Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, México, C.P. 66451
Laura García
Affiliation:
Programa Doctoral en Ingeniería de Materiales, Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, México, C.P. 66451
Get access

Abstract

Iron oxide (Fe2O3, 20-40 nm), aluminum oxide (Al2O3, 50 nm) and silicon oxide (SiO2, 20-60 nm) nanoparticles were mixed in different concentrations (1 to 5 wt %) in a magnesium oxide matrix to develop new refractory matrixes as candidates in the lining of secondary ladle metallurgy. To avoid agglomeration of nanoparticles in the magnesium oxide (MgO) matrix, it was carried out a dispersion method of nanoparticles with different dispersants. After that, the powder mixture was sintered at a temperature of 1300 and 1500 °C for 4 hours. The refractory samples obtained were studied using X-ray diffraction (XRD) and scanning electron microscopy with energy dispersive X-ray spectrometer (SEM-with EDX) and also measured their density and porosity. The results showed that the samples sintered at 1500 °C with 5 wt % of Fe2O3 reached the highest density and presented the MgFe2O4 spinel-type phase. With the addition of Al2O3-nanoparticles in the MgO matrix, there were the formation of MgAl2O4 spinel phase and in the case of SiO2-nanoparticles addition it was observed the formation of Mg2SiO4 forsterite phase. It is well known that with the increase in spinel phase in the matrix, there is a significant help to retain quantities of ions of iron and nickel due to the dissolution of the slag into the refractory material extending their lining life.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tiekink, W., Boertje, R., Boom, R., Kooter, R.. “An experimental study of magnesium transfer between tundish refractory lining and liquid steel”. (IMRC. Proceedings Cancun, Mexico, 2004, p 340.Google Scholar
2. Bray, D. J, Ceram. Bull., Vol. 64, 10121016, (1985).Google Scholar
3. Bazán, V., presented at the VI International Conference on Clean Technologies For the Mining Industry, Concepcion, Chile 2004 (unpublished)Google Scholar
4. Schatcht, C., “Refractories Handbook”,(edited by MarcelDeekker, Inc 2004), p.p. 109-149.Google Scholar
5. Estrada, A., Thesis UANL, México, 2009.Google Scholar
6. Kushnarev, A., Viloguz, E. A., Refractories and Industrial Ceramics, p. 911, (2007).Google Scholar
7. Rigby, GR, Richardson, HM, Ball, Trans Brit Ceram Soc, p. 313320 (1947).Google Scholar
8. Kitai, T. “Fundamental science of refractories: major components, their crystal structure and properties. Spinel Part 2”. (Edited by Taikabutsu, , 1994) p, 383389.Google Scholar
9. Chen, M., Lu, C., Journal of the European Ceramic Society, p. 46334638, (2007).Google Scholar
10. Belyakov, A.V, Refractories and Industrial Ceramics, p.136141, (2009).Google Scholar
11. Babonneau, D., “Dispersion in Solids”, (edited by Springer Verlag Berlin Heidelberg 2007) p. 549567.Google Scholar
12. Ferkel, H. and Hellming, R.J, Nanostruct. Mater, p. 617622, (1999).Google Scholar
13. Makoto, T., Wyley, p 328. (1999).Google Scholar