Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T15:31:09.216Z Has data issue: false hasContentIssue false

Influence of near-surface and volume real structure on the electronic properties of SrTiO3 MIM structures

Published online by Cambridge University Press:  23 June 2011

J. Seibt
Affiliation:
Institute of Experimental Physics, TU Bergakademie Freiberg, Leipziger Strasse 23, 09596 Freiberg, Germany
F. Hanzig
Affiliation:
Institute of Experimental Physics, TU Bergakademie Freiberg, Leipziger Strasse 23, 09596 Freiberg, Germany
R. Strohmeyer
Affiliation:
Institute of Experimental Physics, TU Bergakademie Freiberg, Leipziger Strasse 23, 09596 Freiberg, Germany
H. Stoecker
Affiliation:
Institute of Experimental Physics, TU Bergakademie Freiberg, Leipziger Strasse 23, 09596 Freiberg, Germany
C. Himcinschi
Affiliation:
Institute of Theoretical Physics, TU Bergakademie Freiberg, Leipziger Strasse 23, 09596 Freiberg, Germany
B. Abendroth
Affiliation:
Institute of Experimental Physics, TU Bergakademie Freiberg, Leipziger Strasse 23, 09596 Freiberg, Germany
D. C. Meyer
Affiliation:
Institute of Experimental Physics, TU Bergakademie Freiberg, Leipziger Strasse 23, 09596 Freiberg, Germany
Get access

Abstract

Perovskite-type transition metal oxides have great potential as storage material in resistive random-access memory (RRAM) devices. Typical non-volatile memory cells are realized in metal-insulator-metal (MIM) stacks with insulator thicknesses of few nanometers. We report on the investigation of single-crystal SrTiO3 to understand the role of volume and interface real structure for the electrical conductivity in such materials. Conductivity in SrTiO3 single crystals was established by a reducing high vacuum (HV) annealing introducing charged oxygen vacancies acting as donor centers. Titanium electrodes are evaporated on both crystal faces to obtain an MIM element.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Merkle, R. and Maier, J., Angewandte Chemie 47, 3874 (2008).Google Scholar
[2] de Souza, R., Fleig, J., Merkle, R., and Maier, J., Zeitschrift fuer Metallkunde 94, 218 (2003).Google Scholar
[3] Robertson, J., Journal of Vacuum Science & Technology B 18, 1785 (2000).Google Scholar
[4] Sawa, A., Materials Today 11, 28 (2008).Google Scholar
[5] Szot, K., Speier, W., Bihlmayer, G., and Waser, R., Nature Materials 5, 312 (2006).Google Scholar
[6] Chan, N. H., Sharma, R. K., and Smyth, D. M., Journal of the Electrochemical Society 128, 1762(1981).Google Scholar
[7] Stöcker, H., Zschornak, M., Seibt, J., Hanzig, F., Wintz, S., Abendroth, B., Kortus, J., and Meyer, D. C., Applied Physics A: Materials Science & Processing, 1(2010), ISSN 09478396.Google Scholar
[8] Longo, V. M., de Figueiredo, A. T., de Lazaro, S., Gurgel, M. F., Costa, M. G. S., Paiva-Santos, C. O., Varela, J. A., Longo, E., Mastelaro, V. R., Vicente, F. S. D., et al. ., Journal of Applied Physics 104, 23515 (2008).Google Scholar
[9] Seibt, J., Abendroth, B., Hanzig, F., Stoecker, H., Strohmeyer, R., Meyer, D. C., Wintz, S., Grobosch, M., Knupfer, M., Himcinschi, C., Muehle, U., and Munnik, F., submitted to Journal of Applied Physics (2011).Google Scholar
[10] Tufte, O. N. and Chapman, P. W., Physical Review Letters 155, 796 (1967)Google Scholar
[11] Hanzig, F., Seibt, J., Stoecker, H., Abendroth, B., Meyer, D. C., MRS spring meeting, San Francisco April 24th –29th 2011 Google Scholar