No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
Recently there has been an increase in the use of composite materials for aircraft construction. Composites have significant production and application advantages, but generally suffer from being electrically insulating, and hence are unable to handle a lightening strike in the traditional way that aluminium would. A potential solution to this problem is sought through the use of carbon nanotubes and carbon nanographite. Achieving the correct dispersion of the conducting filler is critical to achieving the desired enhancement in conductivity. Two different methods have been explored to achieve the dispersions; – direct blending and solution dispersion, with a range of concentrations of nanographite being incorporated. In addition, the effect of directly blending graphite nanoplatelets and carbon nanotubes in order to create a hybrid nanocomposite material was studied. The carbon nanotubes were incorporated into a blend with the graphite nanoplatelets with the intention of utilizing their tube structure in order to bridge the gaps between the platelet sheets of nanographite, creating more effective and abundant conductive pathways throughout the composite. In all cases the electrical conductivity was measured using a four point probe technique.