Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T23:20:23.651Z Has data issue: false hasContentIssue false

Influence of Laser Irradiation and Ambient Gas in Preparation of PZT Films by Laser Ablation

Published online by Cambridge University Press:  16 February 2011

Akiharu Morimoto
Affiliation:
Department of Electronics, Faculty of Technology, Kanazawa University, Kanazawa 920, Japan
Shigeru Otsubo
Affiliation:
Shibuya Kogyo Co., Ltd., Kanazawa 920, Japan
Tatsuo Shimizu
Affiliation:
Department of Electronics, Faculty of Technology, Kanazawa University, Kanazawa 920, Japan
Toshiharu Minamikawa
Affiliation:
Industrial Research Institute of Ishikawa Prefecture, Kanazawa 920-02, Japan
Yasuto Yonezawa
Affiliation:
Industrial Research Institute of Ishikawa Prefecture, Kanazawa 920-02, Japan
Hideo Kidoh
Affiliation:
Murata Mfg. Co, Ltd., Nagaokakyo, Kyoto 617, Japan
Toshio Ogawa
Affiliation:
Murata Mfg. Co, Ltd., Nagaokakyo, Kyoto 617, Japan
Get access

Abstract

Pb(Zr0.52Ti0. 48)O3 (PZT) films were prepared on r-plane sapphire substrates by the laser ablation method utilizing ArF excimer laser in O2 or N2O environment. The composition of the films deposited in O2 environment was found to be fairly close to the composition of the target material for a wide range of substrate temperatures, 400 – 750 °c. Increasing the laser fluence (the laser power density) for the ablation enhances the formation of the perovskite structure rather than the pyrochlore one. Use of N2O ambient gas instead of O2 gas enhances the formation of the perovskite structure of PZT films. Furthermore, it was found that a laser irradiation on the growing film surface during deposition enhances the formation of the perovskite structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Iijima, K., Tomita, Y., Takayama, R. and Ueda, I.: J.Appl.Phys. 60, 361 (1986).Google Scholar
2. Kushida, K. and Takeuchi, H.: Appl.Phys.Lett. 50, 1800 (1987).Google Scholar
3. Wasa, K., Yamazaki, O., Adachi, H., Kawaguchi, T. and Setsune, K.: IEEE J.Lightwave Tech.Lt-2, 710 (1984).Google Scholar
4. Nakamura, T.: Kotai Butsuri 25, 81 (1990) (in Japanese).Google Scholar
5. Okada, A.: J.Appl.Phys. 49, 653 (1978).Google Scholar
6. Hamada, H., Ohshika, T. and Hirai, H.: Oyo Butsuri 48, 602 (1979) (in Japanese).Google Scholar
7. Dijikkamp, D., Venkatesan, T., Wu, X.D., Shaheen, S.A., Jisrawi, N., Min-Lee, Y.H., McLean, W.L. and Croft, M.: Appl.Phys.Lett. 51, 619 (1987).Google Scholar
8. Kawai, T., Kanai, M. and Kawai, M.: Mat. Res. Soc. Symp. Proc., Boston, 1987 (Mat. Res. Soc., Pittsburgh, 1988) p.327.Google Scholar
9. Otsubo, S., Minamikawa, T., Yonezawa, Y., Maeda, T., Moto, A., Morimoto, A. and Shimizu, T. Jpn.J.Appl.Phys. 27, L1999 (1988).Google Scholar
10. Otsubo, S., Minamikawa, T., Yonezawa, Y., Maeda, T., Morimoto, A. and Shimizu, T. Jpn.J.Appl.Phys. 28, 2211 (1989).Google Scholar
11. Kanai, M., Kawai, T. and Kawai, S.: Appl.Phys.Lett. 54, 1802 (1989).Google Scholar
12. Minamikawa, T., Yonezawa, Y., Otsubo, S., Maeda, T., Morimoto, A. and Shimizu, T.: Proc. 2nd Int. Symp. on Superconductiuity. 1990 (ISTEC, Tsukuba, 1989) (in press)Google Scholar
13. Otsubo, S., Maeda, T., Minamikawa, T., Yonezawa, Y., Morimoto, A. and Shimizu, T.:Jpn.J.Appl.Phys. 29, L133 (1989).Google Scholar
14. Terada, N., Ihara, H., Hirabayashi, M., Senzaki, K., Kimura, Y., Murata, K. and Tokumoto, M. Jpn.J.Appl.Phys. 26, L508 (1987).Google Scholar
15. Venkatesan, T., Wu, X.D., Inam, A., Jeon, Y., Croft, M., Chase, E.W., Chang, C.C., Wachtman, J.B., Oden, R.W., Brozolo, F. Radicati di and Magee, C.A.: Appl.Phys.Lett. 53, 1431(1988).Google Scholar
16. Otsubo, S., Minamikawa, T., Yonezawa, Y., Morimoto, A. and Shimizu, T.: Jpn.J.Appl.Phys. 29, L73 (1989).Google Scholar