Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T15:23:11.579Z Has data issue: false hasContentIssue false

Influence of Indium Incorporation on Recombination Dynamics in AlInGaN Layers Grown by Pulsed Metal Organic Chemical Vapor Deposition

Published online by Cambridge University Press:  01 February 2011

Jae Ho Song
Affiliation:
Department of Information and Communications, K-JIST 1 Oryong-dong, Buk-gu, Gwangju 500-712 Republic Korea
Jhang W. Lee
Affiliation:
Department of Information and Communications, K-JIST 1 Oryong-dong, Buk-gu, Gwangju 500-712 Republic Korea
P.W. Yu
Affiliation:
Department of Information and Communications, K-JIST 1 Oryong-dong, Buk-gu, Gwangju 500-712 Republic Korea
Mee-Yi Ryu
Affiliation:
Department of Engineering Physics, Air Force Institute of Technology, Wright-Patterson AFB, OH45433, U.S.A.
J. Zhang
Affiliation:
Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208, U.S.A.
E. Kuokstis
Affiliation:
Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208, U.S.A.
J. W. Yang
Affiliation:
Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208, U.S.A.
M. Asif Khan
Affiliation:
Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208, U.S.A.
Get access

Abstract

We investigated the recombination dynamics of the AlInGaN grown by a pulsed metal organic chemical vapor deposition (PMOCVD) by using the temperature dependent photoluminescence (PL) and time resolved photoluminescence (TRPL). The indium mole fractions of our samples are 0-3% and the PL measurement temperatures are 10-300K. The PL data show that AlInGaN layers with higher indium ratios exhibit significantly stronger PL intensities and less intensity reduction to the temperature increase. The TRPL data show that higher indium layers yield shorter lifetime in the low temperature range and longer lifetime in the high temperature range. These results indicate that the indium contents into the AlInGaN layers generate more localized states, which are likely to make the recombination processes in the AlInGaN layers less sensitive to the variation of the temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tamura, T., Setoto, T., and Taguchi, T., J. Lumin. 87-89, 1180 (2000).Google Scholar
2. Nishida, T., Saito, H., and Kobayashi, N., Appl. Phys. Lett. 78, 3927(2001).Google Scholar
3. Wang, T., Liu, Y. H., Lee, Y. B., Ao, J. P., Bai, J., and Sakai, S., Appl. Phys. Lett. 81, 2508 (2002).Google Scholar
4. Narukawa, Y., Niki, K., Izuno, K., Yamada, M., Murazaki, Y., and Mukai, T., Jpn. J. Appl. Phys., Part 2 41, L371 (2002).Google Scholar
5. Im, Jin Seo, Kollmer, H., Off, J., Sohmer, A., Scholz, F., and Hangleiter, A., Phys. Rev. B 57, R9435 (1998).Google Scholar
6. Khan, M. Asif, Yang, J. W., and Simin, G., Gaska, R. and Shur, M. S., Loye, Hans-Conrad zur, Tamulaitis, G. and Zukauskas, A., Smith, David J. and Chandrasekhar, D., Bicknell-Tassius, R., Appl. Phys. Lett. 76, 1161 (2000).Google Scholar
7. Khan, M. Asif, Yang, J. W., Simin, G., Gaska, R., Shur, M. S., and Bykhovski, A. D., Appl. Phys. Lett. 75, (1999) 2806.Google Scholar
8. Chichibu, S., Sota, T., Wada, K. and Nakamura, S., J. Vac. Sci. Technol. B 16, 2204 (1998).Google Scholar
9. Narukawa, Y., Kawakami, Y., Fujita, S., Fujita, S., and Nakamura, S., Phys. Rev. B 55, R1938 (1997).Google Scholar
10. Narukawa, Y., Kawakami, Y., Fujita, S., Fujita, S., and Nakamura, S., Appl. Phys. Lett. 70, 981 (1997).Google Scholar
11. Wang, T., Nakagawa, D., Lachab, M., Sugahara, T. and Sakai, S., Appl.Phys. Lett. 74, 3128 (1999).Google Scholar
12. Chen, C., Yang, J., Ryu, M.-Y., Zhang, J., Kuokstis, E., Simin, G. and Khan, M. Asif, Jpn. J. Appl. Phys., Part 1 41, 1924 (2002).Google Scholar
13. Feldmann, J., Peter, G., Gobel, E. O., Dawson, P., Moore, K., Foxon, C., and Elliott, R. J., Phys. Rev. Lett. 59, 2337 (1987).Google Scholar
14. Gurioli, M., Vinattieri, A., Colocci, M., Deparis, C., Massies, J., Neu, G., Bosacchi, A., and Franchi, S., Phys. Rev. B 44, 3115 (1991).Google Scholar
15. Dumke, William P., Phys. Rev. 105, 139 (1957).Google Scholar