No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
We investigated the recombination dynamics of the AlInGaN grown by a pulsed metal organic chemical vapor deposition (PMOCVD) by using the temperature dependent photoluminescence (PL) and time resolved photoluminescence (TRPL). The indium mole fractions of our samples are 0-3% and the PL measurement temperatures are 10-300K. The PL data show that AlInGaN layers with higher indium ratios exhibit significantly stronger PL intensities and less intensity reduction to the temperature increase. The TRPL data show that higher indium layers yield shorter lifetime in the low temperature range and longer lifetime in the high temperature range. These results indicate that the indium contents into the AlInGaN layers generate more localized states, which are likely to make the recombination processes in the AlInGaN layers less sensitive to the variation of the temperature.