Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T18:52:18.458Z Has data issue: false hasContentIssue false

Influence of High Oxygen Partial Pressure on the Positive Temperature Coefficient Resistivity of BaTiO3

Published online by Cambridge University Press:  15 February 2011

Ben Huybrechts
Affiliation:
Nagaoka University of Technology, Nagaoka 940–21, Japan
K. Ishizaki
Affiliation:
Nagaoka University of Technology, Nagaoka 940–21, Japan
M. Takata
Affiliation:
Nagaoka University of Technology, Nagaoka 940–21, Japan
Get access

Abstract

The influence of high oxygen partial pressures on the PTC behavior of non acceptor doped BaTiO3 is studied by using oxygen-hot-isostatic-press (O2-HIP). Annealing in high oxygen partial pressures increased the maximum resistivity with a factor 3, also the minimum resistivity and the gradient in the Arrhenius plot, i.e. resistivity versus the reciprocal of the temperature, increased. The results are analyzed using the well accepted Heywang model. The changes after O2-HIPping can be explained with an increase in acceptor density at the grain boundaries.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Heywang, W., Solid-State Electronics, 3, 51, (1961)Google Scholar
2. Jonker, G.H., Solid-State Electronics, 7, 895, (1964)CrossRefGoogle Scholar
3. Huybrechts, B., Ishizaki, K. and Takada, M., submitted to J.Am.Ceram.Soc.Google Scholar
4. Daniels, J., Hardtl, K.H. and Wernicke, R., Philips Tech. Rev., 38 (3), 78, (1973)Google Scholar
5. Ting, C.T., Peng, C.J., Lu, H.Y., Wu, S.T., J.Am.Ceram.Soc., 73 (2), 329, (1990)Google Scholar
6. Jonker, G.H., Mat. Res. Bull., 2, 401, (1967)Google Scholar
7. Takahashi, T., Nakano, Y. and Ichinose, N., 98 (8), 879, (1990)Google Scholar
8. Alles, A.B., Amarakoon, V.R.W., Burdick, V.L., J.Am.Ceram.Soc., 72 (1), 148, (1989)Google Scholar
9. Kuwabara, M., Solid-State Electronics, 27, 929, (1984)CrossRefGoogle Scholar
10. Igarashi, H., Hayakawa, S. and Okazaki, K., Japanese J. of Applied Physics, 20, 135, (1981)CrossRefGoogle Scholar
11. Ihrig, H., J.Am.Ceram.Soc., 64 (16), 617, (1981)Google Scholar
12. Ihrig, H., J. Phys. C, 9, 3469, (1976)CrossRefGoogle Scholar
13. Gerthsen, P., Groth, R., Hardtl, K.H., Phys. Stat. Sol., 11, 303, (1965)Google Scholar
14. Maiti, H.S. and Basu, R.N., Mat.Res.Bull., 21, 1107, (1986)CrossRefGoogle Scholar
15. Kinemuchi, Y., Report, Nagaoka University of Technology, 1991 (unpublished).Google Scholar