Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T18:55:41.730Z Has data issue: false hasContentIssue false

The Influence of Heat Excitations, Vacancies and Impurities on the Energy Electronic Band-Structure of Metallic Lithium

Published online by Cambridge University Press:  10 February 2011

V. A. Popov*
Affiliation:
Altai State Technical University, 656099 Barnaul, Russia
Get access

Abstract

The Korringa-Kohn-Rostoker method with Green's function averaged over the atomic configurations in a complex Ising lattice and a muffin-tin potential was used to calculate the electronic-band structure in lithium containing vacancies and s, p, and d impurities. It is shown that substantial changes in the profile of the Fermi surface do not lead to necking, as was postulated previously, but cause splitting of the electronic states at the face of the Brillouin zone. This is attributed to the reduced symmetry of the crystal lattice with impurity excitation of the electronic-subsystem.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Stal'gorova, O. V. and Gromitskaya, E. L., Fiz. Tverd. Tela (St. Petersburg) 37, 1671 (1995) [Phys. Solid State 37, 908 (1995)].Google Scholar
2. Gromitskaya, E. L. and Stal'gorova, O. V., Zh. Eksp. Teor. Fiz. 106, 1453 (1994) [JETP 79, 785 (1994)].Google Scholar
3. Gallaway, J., Zou, X., and Bagayoko, D., Phys. Rev. B 27, 631 (1983).Google Scholar
4. Lysykh, A. A. and Yanson, I. K., Fiz. Tverd. Tela (Leningrad) 21, 117(1979) [Sov. Phys. Solid State 21, 68 (1979)].Google Scholar
5. Stachowiak, H., Phys. Status Solidi 41, 2,599 (1970).Google Scholar
6. Ahuja, R.. Auluck, S., Wills, J. M., Eriksson, O., Sodderliod, P., and Johansson, B., Phys. Rev. B 50, 18 003 (1994).Google Scholar
7. Sakurai, V., Tanaka, Y., Bansil, A., Kaprzyk, S., Slewart, A. T., Nagashima, Y., Hyodo, T., Nanao, S., Kawata, H., and Shiotani, N., Phys. Rev. Lett. 74, 2252 (1995).Google Scholar
8. Popov, V. A., Zh. Eksp. Teor. Fiz. 110, p. 1474 (1996) [JETP 83, 815(1996)].Google Scholar
9. Ching, W. and Callaway, J.. Phys. Rev. B9. 5115 (1974).Google Scholar
10. Callcott, T. A. and Arakawa, E. T.. Phys. Rev. B16. 5185 (1977).Google Scholar
11. Callcott, T. A. and Arakawa, E. T.. Phys. Rev. Lett. 38, 442 (1977).Google Scholar
12. Korringa, J., Physica 13, 392 (1947).Google Scholar
13. Kohn, W. and Rostoker, N., Phys. Rev. 94, 1111 (1954).Google Scholar
14. Nazhalov, A. I., Nyavro, V. F., Fedyainova, N. I., Egorushkin, V. E., and Fadin, V. P., Izv. Vyssh. Uchebn. Zaved. Fiz. 6, 114 (1978).Google Scholar
15. Nazhalov, I., Nyavro, V. F., Fedyainova, N. I., Egorushkin, V. E., and Fadin, V. P., Izv. Vyssh. Uchebn. Zaved. Fiz. 7. 12 (1978).Google Scholar