Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T05:32:52.119Z Has data issue: false hasContentIssue false

Influence of Front Contact Material on Silicon Heterojunction Solar Cell Performance

Published online by Cambridge University Press:  15 February 2011

R. Rizzolp
Affiliation:
CNR-Lamel, Bologna, Italy
R Galloni
Affiliation:
CNR-Lamel, Bologna, Italy
C. Summonte
Affiliation:
CNR-Lamel, Bologna, Italy
R. Pinghin
Affiliation:
Dipartimento di Chimica Applicata e Scienza dei Materiali, Bologna University, v. Risorgimento 2, Bologna, Italy
E. Centurioni
Affiliation:
Dipartimento di Chimica Applicata e Scienza dei Materiali, Bologna University, v. Risorgimento 2, Bologna, Italy
F. Zignan
Affiliation:
CNR-Lamel, Bologna, Italy
A. Desalvo
Affiliation:
CNR-Lamel, Bologna, Italy
P. Rava
Affiliation:
Elettrorava SpA, via Don Sapino 176, 10040 Savonera, (Torino), Italy
A. Madan
Affiliation:
MVSystems, Ine, 17301 W. Colfax Ave, Suite 305, Golden, CO80401
Get access

Abstract

The emitter of amorphous/crystalline silicon heterojunction (HJ) solar cells is normally very thin. Consequently, the metal used as a front contact can produce a partial or even total depletion of this layer. As a result, the diffusion potential of the p-n junction deviates from its maximum value. In this paper, we report the results concerning HJ in which either metal dots (Au, Al), semitransparent metal layers, or indium tin oxide (ITO) dots or layers were used as front contact on the same HJ structure, namely (p)a-Si:H / (i)a-Si:H / (n)c-Si / Al. We show that, for thin p-layers, the dark and light J-V characteristics of HJ solar cells depend on the material used as front contact. In particular, we found that the dark saturation current increases if a low work function material is used. This increase is interpreted in terms of p-layer depletion, and is shown to directly influence the J-V characteristics under illumination, producing a reduction of the open circuit voltage of solar cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Furlan, J., Vidic, M., Smole, F., Skubic, I., 13 EC-PVSEC, Nice (1995), p. 218.Google Scholar
2. Rubinelli, F.A., Daey Ouwens, J., Schropp, R.E.I., 13 EC-PVSEC, Nice (1995), p. 195.Google Scholar
3. Fahrenbrach, A.L. and Bube, R.H., Fundamentals of Solar Cells, Photovoltaic Solar Energy Conversion, Academic Press, New York, (1983), p. 300.Google Scholar
4. Ma, W., Saida, T., Lim, C.C., Aoyama, S., Okamoto, H., and Hamakawa, Y., Ist WCPEC; Hawaii, (1994), p. 417.Google Scholar
5. Sze, S.M., Physics of Semiconductor Devices, Wiley-Interscience, NY (1969).Google Scholar
6. Zignani, F., Galloni, R., Rizzoli, R., Ruth, M., Summonte, C., Pinghini, R., Zini, Q., Rava, P., Madan, A., Tsuo, Y.S., Mat. Res. Soc. Symp. Proc. vol.420 (1996), p. 45.Google Scholar
7. Matsuura, H., Okuno, T., Okushi, H., Tanaka, K., J. Appl. Phys., 55 (1984) 1012.Google Scholar
8. same asref.3, p. 135.Google Scholar
9. same as ref.3, p. 302.Google Scholar
10. Balasubramanian, N. and Subrahmanyam, A., J. Electrochem. Soc. 138 (1991) 322.Google Scholar
11. Tsukada, T., in Amorphous Semiconductor Technologies and Devices, Hamakawa, Y. Ed., JARECT vol. 22, OHMSA, LTD. and North-Holland, (1987).Google Scholar
12. Ishihara, S., Kitagawa, M., and Hirao, T., J. Appl. Phys. 62 (1987) 837.Google Scholar
13. Kolter, M., Eschrich, H., Elstner, L., Beneking, C., Wagner, H., 13 EC-PVSEC, Nice (1995), p. 1526.Google Scholar
14. van Cleef, M.W.N., Rath, J.K., Rubinelli, F.A., van der Werf, C.H.M., Schropp, R.E.I., Proc. 25th IEEE Photov. Spec. Conf., Washington DC, (1996) p. 429.Google Scholar