Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T17:12:42.047Z Has data issue: false hasContentIssue false

Influence of Crystal Growth Conditions on Nitrogen Incorporation During PVT Growth of SiC

Published online by Cambridge University Press:  01 February 2011

Darren Hansen
Affiliation:
[email protected], Dow Corning Compound Semiconductor Solutions, Science and Technology, AUB1007, P.O. Box 994, Midland, MI 48686-0994, Midland, MI, 48686-0994, United States, 989-496-7131, 989-496-6360
Mark Loboda
Affiliation:
[email protected], Dow Corning Compound Semiconductor Solutions, Science and Technology, AUB1007, P.O. Box 994, Midland, MI 48686-0994, Midland, MI, 48686-0994, United States
Get access

Abstract

The control and understanding of the incorporation of nitrogen during SiC PVT continues to play an important role in SiC crystal growth. Nitrogen acts both as a dopant and an impurity depending on the growth conditions and desired resistivity. Epitaxial growth by CVD provides some insight into N incorporation in terms of the face effects, temperature, and impact of the chemical species in terms of the C/Si ratio. This paper will present experimental results showing trends regarding nitrogen incorporation during SiC PVT. Various crystal growth processes operated under constant nitrogen partial pressures were found to produce wide ranges of SiC resistivity. These effects will be analyzed in light of the process impact on gas phase elemental composition (1), crystal stress (2), dopant activation (3) and crystal defectivity (4). The goal of this paper is to provide additional insights regarding nitrogen incorporation during SiC PVT, and in turn drive towards a more holistic approach to control the resistivity of 4H n+ SiC material, based on the understanding established from SiC epitaxy technology.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Larkin, D.J., Phys. Stat. Sol. (B) 202, 305 (1997)Google Scholar
2. Glass, R.C., Henshall, D., Tsvetkov, V.F., and Carter, C.H., Phys. Stat. Sol. (B) 202, 149 (1997).Google Scholar
3. Muller, R., Kunecke, U., Queren, D., Sakwe, S.A., and Wellman, P., Chem. Vap. Deposition 12, 557 (2006).Google Scholar
4. Schulz, D., Irmscher, K., Dolle, J., Eiserbeck, W., Muller, T., Rost, H.J., Siche, D., Wagner, G., and Wollweber, J., Mat. Sci. Forum 339-342, 87 (2000).Google Scholar
5. Irmscher, K., Albrecht, M., Rossberg, M., Rost, H.J., Siche, D., and Wagner, G., Physica B 376-377, 338 (2006).Google Scholar
6. Rost, H.J., Doerschel, J., Irmscher, K., Rossberg, M., Schulz, D., and Siche, D., J. Cryst. Growth 275, e451 (2005).Google Scholar
7. Rost, H.J., Doerschel, J., Irmscher, K., Schulz, D., and Siche, D., J. Crys. Growth 257, 75 (2003).Google Scholar
8. Sugiyama, N., Okamoto, A., and Tani, T., Inst. Phys. Ser. 142, 489 (1996).Google Scholar
9. Onoue, K., Nishikawa, T., Katsuno, M., Ohtani, N., Yashiro, H., and Kanaya, M., Phys. Ser. 142, 65 (1996).Google Scholar
10. Schulze, N., Barrett, D.L., Pensl, G., Rohmfeld, S., and Hundhausen, M., Mat. Sci. and Eng. B61-62, 44 (1999).Google Scholar
11. Onoue, K., Nishikawa, T., Katsuno, M., Ohtani, N., Yahiro, H., and Kanaya, M., Jpn. J. Appl. Phys. 35, 2240 (1996).Google Scholar
12. Semmelroth, K., Schulze, N., and Pensl, G., J. Phys.: Condens. Matter 16, S1597 (2004).Google Scholar
13. Tsvetkov, V.F., Allen, S.T., Kong, H.S., and Carter, C.H., Inst. Phys. Ser. 142, 17 (1996).Google Scholar
14. McD. Hobgood, H., Glass, R.C., Augustine, G., Hopkins, R., Jenny, J., Skowronski, M., Mitchell, W.C., and Roth, M., Appl. Phys. Lett. 66, 1364 (1995).Google Scholar
15. Bickermann, M., Hofmann, D., Straubinger, T.L., Weingartner, R., Wellman, P.J., and Winnacker, A., Appl. Surface Science 184, 84 (2001).Google Scholar
16. Barrett, D.L., McHugh, J.P., Hobgood, H.M., Hopkins, R.H., McMullin, P.G., and Clarke, R.C. Appl. Surface Science 128, 358 (1993)Google Scholar
17. Naitoh, M., Hara, K., Hirose, F., Onda, S., J. Cryst. Growth 237-239, 1192 (2002).Google Scholar
18. Schmitt, E., Straubinger, T., Rasp, M., and Weber, A.D., Superlattices and Microstructures 40, 320 (2006).Google Scholar
19. Lyubimskii, V.M., Sov. Phys. Semcond. 11, 437 (1977).Google Scholar
20.See for example works published as part of International Conference on SiC and Related Materials 2007 held in Otsu, Japan.Google Scholar
21. Li, Q., Polyakov, A., Skowronski, M., Sanchez, E., Loboda, M. J., Fanton, M. A., Bogart, Timothy and Gamble, R. D., Mat. Sci. Forum 527-529, 51 (2006).Google Scholar