Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:09:20.362Z Has data issue: false hasContentIssue false

Influence of Chemical Dopant Technique to Reduce Schottky Barriers of Pd-Contacted CNTFETs

Published online by Cambridge University Press:  01 February 2011

Damien Casterman
Affiliation:
[email protected], EMTERC, Gateway street, Hawthorne Building H00.26, Leicester, LE19BH, United Kingdom
Merlyne Maria De Souza
Affiliation:
[email protected], EMTERC, Gateway Street, Hawthorne Building H00.26, Leicester, LE19BH, United Kingdom
Get access

Abstract

The role of the p-type chemical dopant, SbCl6, on Palladium (Pd)-contacted carbon nanotube field effect transistors (CNTFETs) is investigated using ab initio calculations. The interaction of SbCl6 with Pd leads to the chemisorption of one chlorine atom (Cl) which separates off from the rest of the molecule leaving behind a rehybridized SbCl5 molecule. This interaction increases the local workfunction by 0.08 eV. The interaction of the molecule with the carbon nanotube (CNT) itself results in the physisorption of SbCl6 onto CNT. The SbCl6 is found to degenerately dope CNT p-type and shifts the local potential by 0.29 eV. These barriers are useful for modelling of transport of Schottky barrier CNTFETs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Léonard, F. and Tersoff, J., Phys. Rev. Lett. 84, 4693 (2000).10.1103/PhysRevLett.84.4693Google Scholar
2. Chen, Z., Appenzeller, J., Knoch, J., Lin, Y. and Avouris, Ph., Nano Lett. 5, 1497 (2005).10.1021/nl0508624Google Scholar
3. Todorova, M., Reuter, K. and Scheffler, M., Phys. Rev. B 71, 195403 (2005).Google Scholar
4. Javey, A., Guo, J., Wang, Q., Lundstrom, M. and Dai, H., Nature 424, 654 (2003).Google Scholar
5. Jhi, S. H., Louie, S. G. and Cohen, M., Phys. Rev. Lett. 85, 1710 (2000).Google Scholar
6. Klinke, C., Chen, J., Azfali, A. and Avouris, Ph., Nano Lett. 5, 555 (2005).Google Scholar
7. Chen, J., Klinke, C., Afzali, A. and Avouris, Ph., Appl. Phys. Lett. 86, 123108 (2005).Google Scholar
8. Kresse, G. and Furthmuller, J., Comput. Matter. Sci., 6.16 (1996).Google Scholar
9. Kresse, G. and Hafner, J., Phys. Rev. B 47, 558 (1993).Google Scholar
10. Perdew, J. P. and Zunger, A., Phys. Rev. B 23, 5048 (1981).10.1103/PhysRevB.23.5048Google Scholar
11. Vanderbilt, D., Phys. Rev B 41, 7892 (1990).Google Scholar
12. Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 5188 (1976).Google Scholar
13. Methfessel, M. and Paxton, A., Phys. Rev. B 40, 3616 (1989).Google Scholar
14. Silva, J. L. F. Da, Stampfl, C. and Scheffler, M., Surf. Sci. 600, 703 (2006).Google Scholar
15. Becke, A. D. and Edgecombe, K. E., J. Chem. Phys. 92, 5397 (1990).Google Scholar
16. Silvi, B. and Savin, A., Nature 371, 683 (1994).Google Scholar
17. Bonini, N., Trioni, M. I. and Brivio, G. P., J. Chem. Phys. 113, 5624 (2000).10.1063/1.1290617Google Scholar
18. Franciosi, A. and Van de Walle, C. G., Surf. Sci. Reports 25, 1140 (1996).Google Scholar
19. Dong, W., Ledentu, V., Sautet, Ph., Eichler, A. and Hafner, J., Surf. Sci. 411, 123 (1998).Google Scholar