Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:01:51.502Z Has data issue: false hasContentIssue false

The influence of boron doping in the growth of ultra/nanocrystalline diamond films

Published online by Cambridge University Press:  29 February 2012

Fernando A. Souza
Affiliation:
Instituto Nacional de Pesquisas Espaciais – INPE, Av. dos Astronautas 1758, Jd. da Granja, São José dos Campos, SP/12245-970, Brazil.
Adriana F. Azevedo
Affiliation:
Instituto Nacional de Pesquisas Espaciais – INPE, Av. dos Astronautas 1758, Jd. da Granja, São José dos Campos, SP/12245-970, Brazil.
Maurício R. Baldan
Affiliation:
Instituto Nacional de Pesquisas Espaciais – INPE, Av. dos Astronautas 1758, Jd. da Granja, São José dos Campos, SP/12245-970, Brazil.
Neidenêi G. Ferreira
Affiliation:
Instituto Nacional de Pesquisas Espaciais – INPE, Av. dos Astronautas 1758, Jd. da Granja, São José dos Campos, SP/12245-970, Brazil.
Get access

Abstract

Boron-doped nanocrystalline diamond (BDND) films were grown on silicon substrates by hot filament chemical vapor deposition in Ar/H2/CH4 gas mixtures. The boron source was obtained from an additional H2 line passing through a bubbler containing B2O3 dissolved in methanol with different B/C ratios. The transition from ultrananocrystalline to nanocrystalline diamond films is clearly shown by the addition of boron dopant to the growth gas mixture. The morphology and structure of these films have markedly different properties. The top view and the cross section of the films were characterized by scanning electron microscopy showing the transition from ultrananocrystalline growth (renucleation process) to a columnar structure of NCD films. Finally, the grain size was obtained from X-ray diffraction patterns of the films. The diamond average grain size increased from 10 to 35 nm for films with 2000 and 30,000 ppm B/C, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Williams, O.A., Daenena, M., D’Haen, J., Haenen, K., Maes, J., Moshchalkov, V.V., Nesládek, M. and Gruen, D.M., Diamond Relat. Mater. 15, 654 (2006).Google Scholar
2. Butler, J.E. and Sumant, A.V., Chem. Vap. Deposition 14, 145 (2008).Google Scholar
3. Wang, S., Swope, V.M., Butler, J.E., Feygelson, T. and Swain, G.M., Diamond Relat. Mater. 18, 669 (2009).Google Scholar
4. Lévy-Clément, C., Ndao, N.A., Katty, A., Bernard, M., Deneuville, A., Comninellis, C. and Fujishima, A., Diamond Relat. Mater. 12, 606 (2003).Google Scholar
5. Ferrari, A.C. and Robertson, J., Philos. Trans. Roy. Soc. Lond. A 362, 2477 (2004).Google Scholar
6. Bernard, M., Deneuville, A. and Muret, P.., Diamond Relat. Mater. 13, 282 (2004).Google Scholar
7. Pruvost, F. and Deneuville, A., Diamond Relat. Mater. 10, 531 (2001).Google Scholar
8. May, P.W., Ludlow, W.J., Hannaway, M., Heard, P.J., Smith, J.A. and Rosser, K.N., Diamond Relat. Mater. 17, 105 (2008).Google Scholar
9. Azevedo, A.F., Ramos, S.C., Baldan, M.R. and Ferreira, N.G., Diamond Relat. Mater. 17, 1137 (2008).Google Scholar
10. Haque, M.S., Naseem, H.A., Malshe, A.P., Brown, W.D., Chem. Vap. Depos. 3, 129 (1997).Google Scholar
11. Cicala, G., Bruno, P., Bénédic, F., Silva, F., Hassouni, K. and Senesi, G.S., Diamond Relat. Mater. 14, 421 (2005).Google Scholar
12. Ma, K.L., Zhang, W.J., Zou, Y.S., Chong, Y.M., Leung, K.M., Bello, I. and Lee, S.T., Diamond Relat. Mater. 15, 626 (2006).Google Scholar