Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T23:20:16.607Z Has data issue: false hasContentIssue false

Influence of Arsenic Clustering and Precipitation on the Interstitial and Vacancy Concentration in Silicon

Published online by Cambridge University Press:  21 March 2011

R. Brindos
Affiliation:
SWAMP Center, Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611-6130
M. H. Clark
Affiliation:
SWAMP Center, Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611-6130
K. S. Jones
Affiliation:
SWAMP Center, Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611-6130
M. Griglione
Affiliation:
Agere Systems, Orlando, FL 32819
Hans-J. Gossmann
Affiliation:
Agere Systems, Orlando, FL 32819
A. Agarwal
Affiliation:
Eaton Corporation, Beverly, MA 01915
B. Murto
Affiliation:
International SEMATECH, Austin, TX 78741
E. Andideh
Affiliation:
Intel Corporation, Portland Technology Development, 5200 NE Elam Young Parkway, Hillsboro, OR 97124
Get access

Abstract

The point defect injection from arsenic precipitation was studied using boron marker layers and antimony doped superlattices. Comparisons of arsenic and germanium amorphizing implants showed similar boron marker layer diffusion enhancements after spike annealing. The results indicate that the end of range damage caused by the implants was the source of the diffusion enhancement. Additional annealing cycles showed that there was retardation in the diffusion enhancement of the boron marker layers for precipitation range arsenic implants. Antimony marker layers showed no diffusion enhancement due to vacancy injection. The results of the experiments indicate that arsenic-interstitial complexes are the cause of the decrease flux of interstitials to the bulk.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Current, M. I., in Technology Roadmaps for Doping of Semiconductor Transistors, 1997.Google Scholar
2 Armigiliato, A. and Parsini, A., J. Mater. Res. 6, 1701 (1991).Google Scholar
3 Nobili, D., Carabelas, A., Celotti, G., and Solmi, S., Journal of the Electrochemical Society 130, 922 (1983).Google Scholar
4 Rousseau, P. M., Griffin, P. B., Fang, W. T., and Plummer, J. D., Journal of Applied Physics 84, 3593–601 (1998).Google Scholar
5 Jones, K. S., Downey, D., Miller, H., Chow, J., Chen, J., Puga-Lambers, M., Moller, K., Wright, M., Heitman, E., Glassberg, J., Law, M. E., Robertson, L., and Brindos, R., Kyoto, 1998.Google Scholar
6 Fahey, P. M., Griffin, P. B., and Plummer, J. D., Reviews of Modern Physics 61, 289384 (1989).Google Scholar
7 Armigliato, A. and Parisini, A., J. Mater. Res. 6, 1701 (1991).Google Scholar
8 Armigliato, A., Parisini, A., Derdour, M., Lazzari, P., Moro, L., Nobili, D., and Solmi, S., Solid State Phenomena 19&20, 393 (1991).Google Scholar
9 Parisini, A., Nobili, D., Armigliato, A., Derdour, M., Moro, L., and Solmi, S., Appl. Phys. A 54, 221 (1992).Google Scholar
10 Brindos, R., Keys, P., Law, M. E., and Jones, K. S., Appl. Phys. Lett. 75, 229 (1999).Google Scholar
11 Brindos, R., Law, M. E., Jones, K. S., and Andideh, E., in Arsenic Trapping and its Effect on Enhanced Diffusion, San Francisco, 1999 (Materials Research Society), p. 169.Google Scholar
12 Fair, R. B. and Weber, G. R., J. Appl. Phys. 44, 273279 (1973).Google Scholar
13 Pandey, K. C., Erbil, A., Cargill, G. S., Boehme, R. F., and Vanderbilt, D., Phys. Rev. Lett. 61, 1282 (1988).Google Scholar
14 Ramamoorthy, M. and Pantelides, S. T., Submitted to Physical Review Lett. (1996).Google Scholar
15 Solmi, S. and Nobili, D., Appl. Phys. Lett. 83, 2484 (1998).Google Scholar
16 Nobili, D., Solmi, S., Parsini, A., Derdour, M., Armigliato, A., and Moro, L., Phys. Rev. B 49, 2477 (1994).Google Scholar
17 Jones, K. S., Prussin, S., and Weber, E. R., J. Appl. Phys. 62, 4114 (1987).Google Scholar
18 Hsu, S. N. and Chen, L. J., J. Appl. Phys. 55, 2304 (1989).Google Scholar
19 Hsu, S. N. and Chen, L. J., Nuc. Instr. Meth. Phys. Res. B 55, 620 (1991).Google Scholar
20 Krishnamoorthy, V., Venables, D., Moeller, K., Jones, K. S., and Jackson, J., MRS Proceedings 469, 401406 (1991).Google Scholar
21 Gossmann, H. J., Unterwald, F. C., and Luftman, H. S., Journal of Applied Physics 73, 8327 (1993).Google Scholar
22 Gossmann, H.-J., Vredenberg, A. M., Rafferty, C. S., Luftman, H. S., Unterwald, F. C., Jacobson, D. C., Boone, T., and Poate, J. M., J. Appl. Phys. 74, 31503155 (1993).Google Scholar
23 Venables, D., Krishnamoorthy, V., Gossman, H.-J., Lilak, A., Jones, K. S., and Jacobson, D. C., in The Role of Vacancies and Interstitials in Transient Enhanced Difussion of Arsenic Implanted into Silicon, 1997, p. 315.Google Scholar
24 Eaglesham, D. J., Haynes, T. E., Gossman, H.-J., Jacobson, D. C., Stolk, P. A., and Poate, J. M., Appl. Phys. Lett. 70, 32813283 (1997).Google Scholar
25 Lulli, G., Bianconi, M., Solmi, S., Napolitani, E., and Carnera, A., Appl. Phys. 87, 8461 (2000).Google Scholar