Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T13:56:47.220Z Has data issue: false hasContentIssue false

The Influence of 5- and 6-Atom Rings on the Optical Properties of Amorphous Silicon Nitride. A Cluster Simulation

Published online by Cambridge University Press:  15 February 2011

R.M. Valladarest
Affiliation:
Depto. de Fisica, Fac. de Ciencias, UNAM, Apartado Postal 70-542, México, D.F., 04510, Mexico
A.G. Calles
Affiliation:
Depto. de Fisica, Fac. de Ciencias, UNAM, Apartado Postal 70-542, México, D.F., 04510, Mexico
Alexander Valladares
Affiliation:
Instituto de Investigaciones en Materiales, UNAM, Apartado Postal 70-360, México, D.F., 04510, Mexico
Ariel A. Valladares
Affiliation:
Instituto de Investigaciones en Materiales, UNAM, Apartado Postal 70-360, México, D.F., 04510, Mexico
Get access

Abstract

We simulate α - Si21 –N2: H that contains 6-atom boat-type rings and a – Si17iNi: H that contains 5-atom planar rings, where i = 0, 1 or 4. The simulations were carried out using the DFT-LDA approximation contained in the DMol code of MSI. We report calculations of impurity levels and relate these to the size of the gap and to the optical absorption curves for each cluster. A comparison is made between the two α – SiN clusters studied to analyze the effect of the ring topology.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Roy, S., Sim, K., and Caplin, A., Philos. Mag. B 65 p. 1,445 (1992).Google Scholar
[2] Adams, G., M. O'Keeffe, Denkov, A., Sankey, O., and Huang, Y., Phys. Rev. B 49 p. 8,048 (1994).Google Scholar
[3] Mott, N. and Davis, E., Electronic Processes in Non-crystalline Materials, Oxford University Press, 1971, p. 272.Google Scholar
[4] Papaconstantopoulos, D., Handbook of the Band Structure of Elemental Solids, Plenum, New York, 1986.Google Scholar
[5] Saito, S. and Oshiyama, A., Phys. Rev. B 51 p. 2,628 (1995).Google Scholar
[6] Mélinon, P., Kèghélian, P., Blase, X., Brusc, J. Le, Perez, A., Reny, E., Cros, C., and Pouchard, M., Phys. Rev. B 58 p. 12,590 (1998).Google Scholar
[7] Joannopoulos, J. and Cohen, M., Solid State Physics, Vol. 31, Academic Press, New York, 1976; Phys. Rev. B 7 p. 2,644, Phys. Rev. B 8 p. 2,733 (1973).Google Scholar
[8] Valladares, A.A., Valladares, A., Valladares, R., and McNelis, M., J. Non-Cryst. Solids 231 p. 209 (1998).Google Scholar
[9] Valladares, A.A., Valladares, R., Valladares, A., and McNelis, M. Synth. Met. 103 p.2572 (1999).Google Scholar
[10] Valladares, R., Calles, A., and Valladares, A.A., Synth. Met. 103 p.2570 (1999)Google Scholar
[11] Insight II User Guide, Release 4.00 (San Diego, Molecular Simulations, Inc., September 1996).Google Scholar
[12] Quantum Chemistry, DMol User Guide, Release 960 (San Diego, Molecular Simulations, Inc., September 1996). See also B. Delley, J. Chem. Phys. 92 (1990) 508, and J. Chem. Phys. 94 (1991) 7245.Google Scholar
[13] Vosko, S., Wilk, L. and Nusair, M., Can. J. Phys. 58 p. 1200 (1980).Google Scholar
[14] Valladares, R., Diaz, C., Arroyo, M., McNelis, M. and Valladares, A.A. (Submitted to Phys. Rev. B)Google Scholar