Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T18:35:46.361Z Has data issue: false hasContentIssue false

Indium incorporation and surface segregation during InGaN growth by molecular beam epitaxy

Published online by Cambridge University Press:  17 March 2011

Huajie Chen
Affiliation:
Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
R. M. Feenstra
Affiliation:
Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
J. E. Northrup
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304
J. Neugebauer
Affiliation:
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
D. W. Greve
Affiliation:
Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
Get access

Abstract

InGaN alloys with (0001) or (000) polarities are grown by plasma-assisted molecular beam epitaxy. Scanning tunneling microscopy images, interpreted using first-principles theoretical cal- culations, show that there is strong indium surface segregation on InGaN for both (0001) and (000) polarities. The dependence on growth temperature and group III/V ratio of indium incorporation in InGaN is reported, and a model based on indium surface segregation is proposed to ex- plain the observations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Nakamura, S. and Fasol, G., The Blue Laser Diode (Springer, Berlin, 1997).Google Scholar
[2] Chen, H., Smith, A. R., Feenstra, R. M., Greve, D. W., and Northrup, J. E., MRS Internet J. Nitride Semicond. Res. 4S1, G9.5 (1999).Google Scholar
[3] Northrup, J. E. and Neugebauer, J., Phys. Rev. B 60, 8473 (1999).Google Scholar
[4] Chen, H., Feenstra, R. M., Northrup, J. E., Zywietz, T., Neugebauer, J., and Greve, D. W., J. Vac. Sci. Technol. B 18, 2284 (2000).Google Scholar
[5] Ramachandran, V., Brady, M. F., Smith, A. R., Feenstra, R. M., Greve, D. W., J. Electron. Mater. 27, 308 (1998).Google Scholar
[6] Ramachandran, V., Smith, A. R., Feenstra, R. M. and Greve, D. W., J. Vac. Sci. Technol. A 17, 1289 (1999).Google Scholar
[7] Chen, H., Feenstra, R. M., Northrup, J. E., Zywietz, T., and Neugebauer, J., Phys. Rev. Lett. 85, 1902 (2000).Google Scholar
[8] Harrison, W. A., Electronic structure and the properties of solids (Freeman, San Francisco, 1980) p 176.Google Scholar
[9] Zywietz, T., Ph.D. Thesis, Technical University of Berlin, 1999.Google Scholar
[10] Tarsa, E. J., Heying, B., Wu, X. H., Fini, P., DenBaars, S. P., and Speck, J. S., J. Appl. Phys. 82, 5472 (1997).Google Scholar
[11] Bättcher, T., Einfeldt, S., Kirchner, V., Figge, S., Heinke, H., Hommel, D., Selke, H., and Ryder, P. L., Appl. Phys. Lett. 73, 3232 (1998).Google Scholar
[12] The argument of the surface always being terminated by at least two layers of metal atoms may not be true under very N rich conditions, since in that case we see a different surface recon- struction (3×3) which may not contain the In adlayer, as discussed in Ref. [4].Google Scholar