Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T15:52:19.075Z Has data issue: false hasContentIssue false

Indirect Diffusion Mechanism of Boron Atoms in Crystalline and Amorphous Silicon

Published online by Cambridge University Press:  01 February 2011

Salvo Mirabella
Affiliation:
[email protected], CNR-INFM, MATIS, Via Santa Sofia, 64, Catania, I-95123, Italy, +390953785510, +390953785243
Davide De Salvador
Affiliation:
[email protected], University of Padova, Physics Department, Via F. Marzolo, 8, Padova, I-35131, Italy
Enrico Napolitani
Affiliation:
[email protected], University of Padova, Physics Department, Via F. Marzolo, 8, Padova, I-35131, Italy
Elena Bruno
Affiliation:
[email protected], CNR-INFM, MATIS, Via Santa Sofia, 64, Catania, I-95123, Italy
Giuliana Impellizzeri
Affiliation:
[email protected], CNR-INFM, MATIS, Via Santa Sofia, 64, Catania, I-95123, Italy
Gabriele Bisognin
Affiliation:
[email protected], University of Padova, Physics Department, Via F. Marzolo, 8, Padova, I-35131, Italy
Emanuele Francesco Pecora
Affiliation:
[email protected], University of Catania, Physics and Astronomy Department, Via Santa Sofia, 64, Catania, I-95123, Italy
Alberto Carnera
Affiliation:
[email protected], University of Padova, Physics Department, Via F. Marzolo, 8, Padova, I-35131, Italy
Francesco Priolo
Affiliation:
[email protected], University of Catania, Physics and Astronomy Department, Via Santa Sofia, 64, Catania, I-95123, Italy
Get access

Abstract

The diffusion of B atoms in crystalline and amorphous Si has been experimentally investigated and modeled, evidencing the indirect mechanism of these mass transport phenomena. The migration of B occurs after interaction with self-interstitials in crystalline Si (c-Si) or with dangling bonds in amorphous Si (a-Si). In the first case, an accurate experimental design and a proper modeling allowed to determine the microscopic diffusion parameters as the B-defect interaction rate, the reaction paths leading to the diffusing species and its migration length. Moreover, by changing the Fermi level position, B atoms are shown to interact preferentially with neutral or doubly positively charged self-interstitials. As far as the amorphous case is concerned, B diffusion is revealed to have a marked transient character and to depend on the B concentration itself. In particular, boron atoms can move after the interaction with dangling bonds whose density is transiently increased after ion implantation or permanently enhanced by the presence of boron atoms themselves. Unexpectedly, B diffusivity in a-Si is seen to be orders of magnitude above than in c-Si and to depend on the thermal history, i.e. the relaxation status of the amorphous phase. These data are presented and their implications discussed.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Goesele, U. and Tan, T.Y. in Defects in Semiconductors II, edited by Corbett, J.W. and Mahayan, S. (North-Holland, New York, 1983), p. 45.Google Scholar
2. Cowern, N. E. B., Janssen, K. T. F., vandeWalle, G. F. A., Gravesteijn, D. J., Phys. Rev. Lett. 65, 2434 (1990); N. E. B. Cowern, G. F. A. vandeWalle, D. J. Gravesteijn, C. J. Vriezema, Phys. Rev. Lett. 67, 212 (1991).Google Scholar
3. Zhu, J. et al., Phys. Rev. B 54, 4741 (1996).Google Scholar
4. Sadigh, B. et al., Phys. Rev. Lett. 83, 4341 (1999).Google Scholar
5. Windl, W., Bunea, M.M., Stumpf, R., Dunham, S.T., Masquelier, M.P., Phys. Rev. Lett. 83, 4345 (1999).Google Scholar
6. Fair, B.R., Pappas, P.N., J. Electrochem. Soc. 122 1241 (1975).Google Scholar
7. Fahey, P.M., Griffin, P.B., Plummer, J.D., Rev. Mod. Phys. 61 289 (1989).Google Scholar
8. Martin-Bragado, I. et al., Phys. Rev. B 72 35202 (2005).Google Scholar
9. Silvestri, H.H., Mater. Res. Soc. Proc. 719 F13.10 (2002).Google Scholar
10. Bracht, H.A., Silvestri, H.H., Hallerb, E.E., Solid State Commun. 133 727 (2005).Google Scholar
11. Salvador, D. De et al., Phys. Rev. Lett. 97, 255902 (2006).Google Scholar
12. Bracht, H., Silvestri, H. H., Sharp, I. D., and Haller, E. E., Phys Rev. B 75, 035211 (2007)Google Scholar
13. Pantelides, S.T., Phys. Rev. Lett. 57, 2979 (1986); P. C. Kelires and J. Tersoff, Phys. Rev. Lett. 61, 562 (1988).Google Scholar
14. Bernstein, N., Feldman, J. L. and Fornari, M., Phys. Rev. B 74, 205202 (2006).Google Scholar
15. Roorda, S., Doorn, S., Sinke, W.C., Scholte, P.M.L.O., vanLoenen, E., Phys. Rev. Lett. 62, 1880 (1989); S. Roorda et al., Appl. Phys. Lett. 56, 2097 (1990).Google Scholar
16. Stolk, P. A. et al., J. Appl. Phys. 75, 7266 (1994) and references therein.Google Scholar
17. Pawlak, B.J. et al., Appl. Phys. Lett. 86, 101913 (2005).Google Scholar
18. Duffy, R. et al., Appl. Phys. Lett. 84, 4283 (2004).Google Scholar
19. Venezia, V.C. et al., Mat. Sci. Eng. B 124-125, 245 (2005).Google Scholar
20. Salvador, D. De et al., Appl. Phys. Lett. 89, 241901 (2006).Google Scholar
21. Salvador, D. De et al., J. Vac. Sci. Tech. B 26, 382 (2008)Google Scholar
22. Mirabella, S. et al., Phys. Rev. B 65, 045209 (2002).Google Scholar
23. Napolitani, E. et al., J. Vac. Sci. Technol. B 24 394 (2006); E. Napolitani et al., Phys. Rev. Lett. 93 055901 (2004).Google Scholar
24. Mirabella, S. et al., Phys. Rev. Lett. (2008) in press.Google Scholar
25. Mattoni, A. and Colombo, L., Phys. Rev. B 69, 45204 (2004).Google Scholar
26. Myers, S. M. and Follstaedt, D. M., J. Appl. Phys. 79, 1337 (1996).Google Scholar
27. Muller, G. et al., Phyl. Mag. B 73, 245 (1996); G. Muller, Curr. Opin. Sol. State Mater. Sci. 3 (1998) 364.Google Scholar
28. Pichler, P., Intrinsic point defects, impurities, and their diffusion in silicon, edit by Selberherr, S., (Springer, Wien-NewYork, 2004).Google Scholar