Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T07:34:12.736Z Has data issue: false hasContentIssue false

Increase of Magnetic Transition Temperatures by Reduction of Local Disorder for Perovskite Manganites

Published online by Cambridge University Press:  01 February 2011

B. Dabrowski
Affiliation:
Department of Physics, Northern Illinois University, DeKalb, IL 60115
O. Chmaissem
Affiliation:
Department of Physics, Northern Illinois University, DeKalb, IL 60115
J. Mais
Affiliation:
Department of Physics, Northern Illinois University, DeKalb, IL 60115
S. Kolesnik
Affiliation:
Department of Physics, Northern Illinois University, DeKalb, IL 60115
J.D. Jorgensen
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
S. Short
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

We report the synthesis of Sr1-xCaxMnO3 and La0.5Ba0.5MnO3 perovskites over extended cation and oxygen composition ranges and describe the dependence of their phase stability on the tolerance factor t = t(x,T,σ) that is a function of composition, temperature, and oxygen content. We show that magnetic transition temperatures depend strongly on the tolerance factor and charge disorder while dependence on the structural disorder is less important. By reducing charge and structural disorder we have significantly increased the Curie and Neel temperatures for perovskite manganites.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Tokura, Y. and Nagaosa, N., Science 288: (5465) 462468 (2000).Google Scholar
2 Goodenough, J.B., Wiley, New York, (1963).Google Scholar
3 Boekema, C., Woude, F. Van Der, and Sawatzky, G.A., Int. J. Magnetism, 3, 341, (1972).Google Scholar
4 Rodriguez-Martinez, L.M., and Attfield, J.P., Phys. Rev. B 54, R15622 (1996).Google Scholar
5 Shannon, R.D., Acta Crystallogr. Sec. A 32, 751, (1976).Google Scholar
6 Urushibara, A., Moritomo, Y., Arima, T., Asamitsu, A., Kido, G., Tokura, Y., Phys. Rev. B 51, 14103, (1995).Google Scholar
7 Schiffer, P., Ramirez, A.P., Bao, W. and Cheong, S.-W., Phys. Rev. Lett. 75, 3336, (1995).Google Scholar
8 Hwang, H.Y., Cheong, S-W., Radaelli, P.G., Marezio, M., and Batlogg, B., Phys. Rev. Lett. 75, 914917 (1995).Google Scholar
9 Millange, F., Caignaert, V., Domenges, B., Raveau, B., and Suard, E., Chem. Mater. 10, 1974, (1998).Google Scholar
10 Chmaissem, O., Dabrowski, B., Kolesnik, S., Mais, J., Brown, D.E., Kruk, R., Prior, P., Pyles, B., Jorgensen, J.D., Phys. Rev. B 64, 134412, (2001).Google Scholar
11 Dabrowski, B., Kolesnik, S., Chmaissem, O., Mais, J., Jorgensen, J.D., unpublished.Google Scholar
12 Dabrowski, B., Chmaissem, O., Mais, J., and Kolesnik, S., Jorgensen, J. D., and Short, S., unpublished.Google Scholar
13 Kawano, H., Kajimoto, R., Yoshizawa, H., Tomioka, Y., Kuwahara, H., and Tokura, Y., Phys. Rev. Lett. 78, 4253, (1997).Google Scholar
14 Dagotto, E., Hotta, T., and Moreo, A., Phys. Rep. 344, 1, (2001).Google Scholar