Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T23:04:37.983Z Has data issue: false hasContentIssue false

Incorporation of Silicon in Low Temperature Molecular Beam Epitaxial GaAs

Published online by Cambridge University Press:  15 February 2011

M. O. Manasreh
Affiliation:
Solid State Electronics Directorate (WL/ELRA), Wright Laboratory, Wright-Patterson Air Force Base, OH 45433-6543
K. R. Evans
Affiliation:
Solid State Electronics Directorate (WL/ELRA), Wright Laboratory, Wright-Patterson Air Force Base, OH 45433-6543
C. E. Stutz
Affiliation:
Solid State Electronics Directorate (WL/ELRA), Wright Laboratory, Wright-Patterson Air Force Base, OH 45433-6543
D. C Look
Affiliation:
Department of Physics, Wright State University, Dayton, OH 45435
J. Hemsky
Affiliation:
Department of Physics, Wright State University, Dayton, OH 45435
Get access

Abstract

The localized vibrational mode (LVM) of silicon donor (SiGa) in molecular beam epitaxial GaAs layers grown at various temperatures is studied using the infrared absorption technique. It is found that the total integrated absorption of this LVM is decreased as the growth temperature decreases. This finding suggests a nonsubstitutional incorporation of Si in GaAs layers grown at ∼200 °C. On the other hand, an almost complete substitutional incorporation is obtained in GaAs layers grown at temperatures higher that 350 °C. Thermal annealing does not cause any recovery of the SiGa LVMs in present GaAs layers grown at ∼200°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Manasreh, M. O., Look, D. C., Evans, K. R., and Stutz, C. E., Phys. Rev. B 41, 10272 (1990).Google Scholar
2.von Bardeleben, H. J., Manasreh, M. O., Look, D. C., Evans, K. R., and Stutz, C. E., Phys. Rev. B (to be published).Google Scholar
3.von Bardeleben, H. J., Jia, Y. Q., Manasreh, M. O., Evans, K. R., and Stutz, C. E., to be published in the 1 6th International Conference on Defects in Semiconductors (1992); See also the MRS 1991 Fall Meeting, Symposium F.Google Scholar
4.Smith, F. W., Calawa, A. R., Chen, G-L., Manfra, M. J., and Mahoney, L. J., IEEE Electron Device Lett. 9, 77 (1988).10.1109/55.2046Google Scholar
5.Winer, K., Kawashima, M., and Horikoshi, , Appl. Phys. Lett. 58, 2818 (1991).Google Scholar
6.Fisher, D.W. and Manasreh, M.O., J. Appl. Phys. 68, 2504 (1990).Google Scholar
7.Fischer, D. W. and manasreh, M.O., J.Appl.Phys.69, 6733 (1991).Google Scholar
8.Kaminska, M., Liliental-Weber, Z., Weber, E. R., George, T., Kortright, J. B., Smith, F. W., Tsaur, B-Y., and Calawa, A. R., Appl. Phys. Lett. 54, 1881 (1989).Google Scholar
9.Miller, J. N. and Low, T. S., J. Crytal Growth 111, 30 (1991).Google Scholar
10.Warren, A. C., Woodall, J. M., Freeouf, J. L., Grischkowsky, D., McInturff, D. T., Melloch, M. R., and Otsuka, N., Appl. Phys. Lett. 57, 1331 (1990).Google Scholar
11.Mahalingam, K., Otsuka, N., Melloch, M. R., Woodall, J. M., and Warren, A. C., J. Vac. Sci. Tech. B 9, 2328 (1991).Google Scholar
12.Look, D. C., J. Appl. Phys. 70, 3148 (1991)Google Scholar