Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T15:42:54.093Z Has data issue: false hasContentIssue false

Incorporation and Role of Nitrogen During Oxynitridation of Silicon Studied by Photoelectron Spectroscopy

Published online by Cambridge University Press:  10 February 2011

Masayuki Suzuki
Affiliation:
Department of Electric Engineering and Electronics, Seikei University, Tokyo, [email protected]
Yoji Saito
Affiliation:
Department of Electric Engineering and Electronics, Seikei University, Tokyo, [email protected]
Get access

Abstract

We tried direct oxynitridation of silicon surfaces by remote-plasma-exited nitrogen and oxygen gaseous mixtures at 700°C in a high vacuum. The oxynitrided surfaces were investigated with in-situ X-ray photoelectron spectroscopy. With increase of the oxynitridation time, the surface density of nitrogen gradually increases, but that of oxygen shows nearly saturation behavior after the rapid increase in the initial stage. We also annealed the grown oxynitride and oxide films to investigate the role of the contained nitrogen. The desorption rate of oxygen from the oxynitride films is much less than that from oxide films. We confirmed that nitrogen stabilizes the thermal stability of these oxynitride films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Ting, W., Lo, G. Q., Ahn, J., Chu, T. Y. and Kwong, D.L., IEEE Electron Device Lett. Vol. 12, p. 416 (1991)10.1109/55.119150Google Scholar
2 Ahn, J., Timg, W.. Chu, T., Lin, S. N. and Kwong, D. L., J. Electrochem, Soc. Vol. 138, p. L39 (1991)10.1149/1.2086070Google Scholar
3 Okada, Y., Tobin, P. J., Lakhotia, V., Feil, W. A., Ajuria, S. A. and Hegde, R. I., Appl. Phys. Lett. 63 (2), p. 194 (1993)10.1063/1.110400Google Scholar
4 Tobin, P. J., Okada, Y., Ajuria, S. A., Lakhotia, V., Feil, W. A. and Hegde, R. I., J. Appl. Phys. Vol. 75, p. 1811 (1994)10.1063/1.356374Google Scholar
5 Hegde, R.I., Tobin, P. J., Reid, K. G., Maiti, B. and Ajuria, S. A., Appl. Phys. Lett. 66 (21), p. 2882 (1995)10.1063/1.113461Google Scholar
6 Lu, Z. H., Tay, S. P., Cao, R. and Pianetta, P., Appl. Phys. Lett. 67, p. 2836 (1995)10.1063/1.114801Google Scholar
7 Bouvet, D., Clivaz, P. A., Dutoit, M., Coluzza, C., Almeida, J., Margaritondo, G. and Pio, F., J. Appl. Phys. 79 (9), p. 7114 (1996)10.1063/1.361481Google Scholar
8 Kaluri, S. R. and Hess, D.W., Appl. Phys. Lett. 69 (8), p. 1053 (1996)10.1063/1.116928Google Scholar
9 Saito, Y. and Iguchi, S., Applied Surface Science 130–132, p. 187 (1998)10.1016/S0169-4332(98)00048-8Google Scholar
10 Saito, Y., Appl. Phys. Lett. 68 (6), p. 800 (1996)10.1063/1.116537Google Scholar