Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:32:35.187Z Has data issue: false hasContentIssue false

Incentives for Using LEIM in the Investigation of Corrosion Initiation on Organic Coated Alloys

Published online by Cambridge University Press:  17 March 2011

S. R. Taylor
Affiliation:
Center for Electrochemical Science and Engineering University of Virginia Charlottesville, VA, 22904, USA
A.M. Mierisch
Affiliation:
Center for Electrochemical Science and Engineering University of Virginia Charlottesville, VA, 22904, USA
Get access

Abstract

Local electrochemical impedance mapping and spectroscopy (LEIM/S) have become important tools for the investigation of local electrochemical breakdown events associated with the degradation of organically coated metals in aqueous environments. LEIM/S of organic coated metal substrates has revealed local degradation events that are distributed spatially and temporally. These observations provide support to a number of long-standing theories, as well as provide new insight into the damage process. The local changes in impedance observed at early stages of immersion support the presence of virtual pores, while the metastability of impedance peaks representing the local changes provide evidence of healing via corrosion product formation. Each of these are long-standing theories used to explain global electrochemical impedance measurements. This paper will provide an overview of some of the events observed using LEIM and examine these results in the context of recent analytical and numerical models. Models used to predict the electric field above an equipotential disk electrode support the interpretation of most experimental LEI data as being representative of chemical and physical phenomenon and not a result of measurement artifact. However, certain features may be an artifact of the finite nature of the experimental process. The interpretation of LEIM events in view of current experimental and modeling results will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kendig, M.W. and Leidheiser, H. Jr, J. Electrochem. Soc., 123(7):982 (1976).Google Scholar
2. Callow, L.M. and Scantlebury, J.D., J. Oil Col. Chem. Assoc., 64(2):83 (1981).Google Scholar
3. Piens, M. and Verbist, R., in Corrosion Control by Organic Coatings, ed. by Leidhesiser, H. Jr, NACE, Houstin, Texas, pp.103110 (1981).Google Scholar
4. Szauer, T., Prog. Org. Coatings, 10: 171 (1982).Google Scholar
5. Hubrecht, J. and Vereeken, J., J. Electrochem. Soc., 132(2):2886 (1985).Google Scholar
6. Kendig, M.W. and Mansfeld, F., Tsai, S., Corr. Sci., 23(4):317 (1983).Google Scholar
7. Taylor, S.R., IEEE Trans. Elecron. Insul. 24: 787 (1989).Google Scholar
8. Mansfeld, F. and Tsai, C.H., Corrosion, 47: 958 (1991).Google Scholar
9. Hirayama, R. and Haruyama, S., Corrosion, 47: 953 (1991).Google Scholar
10. Mills, D.J. and Mayne, J.E.O., in Corrosion Control by Organic Coatings, ed. by Leidhesier, H. Jr, NACE, Houston, Texas, pp.1217 (1981).Google Scholar
11. Mayne, J.E.O. and Scantlebury, J.D., Br. Polym. J., 2(5):240 (1970).Google Scholar
12. Isaacs, H.S. and Vyas, B., in Electrochemical Corrosion Testing, ASTM STP 727, ed. by Mansfeld, F. and Bertocci, U., pp.333, ASTM, (1981).Google Scholar
13. Bates, S.J., Gsoden, S.R., and Sargent, D.A., Mater. Sci. Technol., 5: 356 (1989).Google Scholar
14. Voruganti, V.S., Luft, H.B., Degeer, D., and Bradford, S.A., Corrosion, 47: 343 (1991).Google Scholar
15. Isaacs, H.S., Corrosion, 43: 594 (1987).Google Scholar
16. Isaacs, H.S., Corr. Sci., 28: 547 (1988).Google Scholar
17. Jaffe, L.F. and Nuccitelli, R., J. Cell Biol., 64: 614 (1974).Google Scholar
18. Stratmann, M. and Streckel, H., Corr. Sci., 30: 681 (1990).Google Scholar
19. Stratmann, M. and Streckel, H., Corr. Sci., 30: 697 (1990).Google Scholar
20. Stratmann, M. and Streckel, H., Corr. Sci., 30: 715 (1990).Google Scholar
21. Bard, A.J., Fan, F.R.F., Kwak, J., and Lev, O., Anal. Chem. 61: 132 (1989).Google Scholar
22. Kwak, J. and Bard, A.J., Anal. Chem., 61: 1794 (1989).Google Scholar
23. Mirkin, M.V., Anal. Chem News Feat., 177A (March 1996).Google Scholar
24. Localized In-Situ Methods for Investigating Electrochemical Interfaces, ECS Proceedings PV99-28, Edited by Taylor, S.R., Hillier, A.C., and Seo, M., The Electrochemical Society, Pennington, NJ (2000).Google Scholar
25. Butt, H.J., Jaschke, M., and Ducker, W., Bioelectrochem. Bioenergy, 38: 191 (1995).Google Scholar
26. Gesang, T., Hoper, R., Diekoff, S., Schlett, V., Possart, W., and Hennemann, O.D., Thin Solid Films, 264: 194 (1995).Google Scholar
27. Frommer, J., Angew Chem. Int. Ed. Engl., 3: 1298 (1992).Google Scholar
28. Bierwagen, G.P., Twite, R., Chen, G., and Tallman, D.E., Prog. Org. Coat., 32: 25 (1997).Google Scholar
29. Isaacs, H.S. and Kendig, M.W., Corrosion, 36: 269 (1980).Google Scholar
30. Lillard, R.S., Moran, P.J., and Isaacs, H.S., J. Electrochem. Soc., 139: 1007 (1992).Google Scholar
31. Zhou, F., Thierry, D., and Isaacs, H.S., J. Electrochem. Soc., 144: 1208 (1997).Google Scholar
32. Annergren, I., Thierry, D., and Zhou, F., J. Electrochem. Soc., 144: 1957 (1997).Google Scholar
33. Lillard, R., Kruger, J., Tait, W.S., and Moran, P.J., Corrosion, 51: 251 (1995).Google Scholar
34. Wittmann, M.W. and Taylor, S.R., in Advances in Corrosion Protection by Organic Coatings II, edited by Scantlebury, J.D. and Kendig, M.W., PV95-13, p. 158, The Electrochemical Society, Pennington, NJ (1995).Google Scholar
35. Wittmann, M.W., Leggat, R.B., and Taylor, S.R., J. Electrochem. Soc., 146(11):4076 (1999).Google Scholar
36. Leggat, R.B. and Taylor, S.R., Corrosion, 55(10):984 (1999).Google Scholar
37. Mierisch, A.M. and Taylor, S.R., J. of Corr Sci. and Engr., Vol. 2, Paper 30, http://www.cp.umist.ac.uk/JCSE.Google Scholar
38. Taylor, S.R. and Wittmann, M.W., in Electrically Based Microstructural Characterization, Vol. 411, edited by Gerhardt, R.A., Taylor, S.R., and Garboczi, E.J., Materials Research Society, Pittsburgh, PA, pp.3138 (1996).Google Scholar
39. Mierisch, A.M. and Taylor, S.R., in Electrically Based Microstructural Characterization II, Vol. 500, edited by Gerhardt, R.A., Taylor, S.R., and Alim, M., Materials Research Society, Pittsburgh, PA, pp. 3542 (1998).Google Scholar
40. Bayet, E., Huet, F., Keddam, M., Ogle, K., and Takenouti, H., J. Electrochem. Soc., 144:L87 (1997)Google Scholar
41. Bayet, E., Garrigues, L., Huet, F., Keddam, M., Ogle, K., Stein, N., and Takenouti, H., in Localized In-Situ Methods for Investigating Electrochemical Interfaces, ECS Proceedings PV99-28, Edited by Taylor, S.R., Hillier, A.C., and Seo, M., The Electrochemical Society, Pennington, NJ, pp.200211 (2000).Google Scholar
42. Miersich, A.M., Yuan, J., Kelly, R.G., and Taylor, S.R., J. Electrochem. Soc., 146(12):4449 (1999).Google Scholar
43. Buchheit, R.G., Grant, R.P., Hlava, P.F., McKenzie, B., and Zender, G.L., J. Electrochem. Soc., 144: 2621 (1997).Google Scholar
44. Miersich, A.M. and Taylor, S.R., in Localized In-Situ Methods for Investigating Electrochemical Interfaces, ECS Proceedings PV99-28, Edited by Taylor, S.R., Hillier, A.C., and Seo, M., The Electrochemical Society, Pennington, NJ, pp.229240 (2000).Google Scholar
45. Isaacs, H.S., J. Electrochem. Soc., 138(3):722 (1991).Google Scholar
46. Newman, J., J. Electrochem Soc., Technical Notes, May (1966).Google Scholar
47. Nanis, L., Kesselman, W., J. Electrochem. Soc., 118(3):454 (1971).Google Scholar
48. Zou, F., Thierry, D., Isaacs, H.S., J. Electrochem. Soc., 144(6):1957 (1997).Google Scholar