Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T05:29:23.504Z Has data issue: false hasContentIssue false

InAs Quantum Dots Grown on an AlGaAsSb Strain-Relief Buffer

Published online by Cambridge University Press:  17 March 2011

A.L. Gray
Affiliation:
Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, NM 87106
L. R. Dawson
Affiliation:
Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, NM 87106
Y. Lin
Affiliation:
Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, NM 87106
A. Stintz
Affiliation:
Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, NM 87106
Y.-C. Xin
Affiliation:
Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, NM 87106
A.A. Garza
Affiliation:
Department of Earth and Planetary Sciences (Geology), University of New Mexico
L. F. Lester
Affiliation:
Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, NM 87106
Get access

Abstract

An In(Ga)As-based self-assembled quantum dot laser test structure grown on strain-relief Al0.5Ga0.5As1-ySby strain-relief buffer layers (0≤y ≤ 0.24) on a GaAs substrate is investigated in an effort to increase dot size and therefore extend the emission wavelength over conventional InAs quantum dots on GaAs platforms. Cross-section transmission electron microscopy, and high-resolution x-ray diffraction are used to monitor the dislocation filtering process and morphology in the buffer layers. Results show that the buffer layers act as an efficient dislocation filter by drastically reducing threading dislocations, thus providing a relaxed, low dislocation, compositionally modulated Al0.5Ga0.5Sb0.24As0.76 substrate for large (500Å height x 300Å width) defect -free InAs quantum dots. Photoluminescence shows a ground-state emission of the InAs quantum dots at 1.45 μm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Liu, G.T., Stintz, A., Li, H., Malloy, K.J., Lester, L.F., Electron. Lett., 35, 1163 (1999).Google Scholar
2 Newell, T. C., Bossert, D. J., Stintz, A., Fuchs, B., Malloy, K. J., Lester, L. F., IEEE Photon. Technol. Lett. 11, 15271529 (1999).Google Scholar
3 Stintz, A., Liu, G.T., Li, H., Lester, L.F., and Malloy, K.J., to be published in IEEE Photon. Technol. Lett., July 2000.Google Scholar
4 Ustinov, V.M., Maleev, N.A., Zhukov, A.E. et al. , Appl. Phys. Lett. 74, 19 (1999).Google Scholar
5 Huffaker, D.L., Park, G., Zou, Z., Shchekin, O.B., and Deppe, D.G., Appl. Phys. Lett., 73, 18 (1998).Google Scholar
6 Treating the QDs as ideal quantum boxes, the confined electron ground energies can be written as Here a, b and c are the lengths and height of QDs along the [110], [-110] and [001] direction respectively, ħ is Planks constant and m is the effective mass.Google Scholar
7 Eaglesham, D.J. and Cerullo, M., Phys. Rev. Lett. 64, 1943 (1990).Google Scholar
8 Snyder, C.W., Mansfield, J.F., and Orr, B.G., Phys. Rev. B 46, 9551 (1992).Google Scholar
9 Behet, M., vanderZanden, K., Borghs, G., Behres, A., Appl. Phys. Lett., 73(#19), 2760, (1998).Google Scholar
10 Hwang, K.C., Chao, P.C., Creamer, C., Nichols, K.B., Wang, S., Tu, D., Kong, W., Dugas, D., and Patton, G., IEEE Electron Device Lett., 20, 551, (1999).Google Scholar
11 Gill, D.M., Kane, B.C., Svensson, S.P., Tu, D.-W., Uppal, P.N., and Byer, N.E., IEEE Electron Device Lett., 17, 328, (1996).Google Scholar
12 Onabe, K., Jpn. J. Appl. Physics, 21, L323 (1982).Google Scholar
13 Chu, S.N.G., Nakahara, S., Strege, K.E., and Johnson, W.D. Jr., J. Appl. Phys. 57 (10), 4610, (1985).Google Scholar
14 Kaspi, R., Barnett, S.A. and Hultman, L., J. Vac. Sci. Technology. B 13(3), 978, (1995).Google Scholar
15 GT, Liu, Stintz, A, EA, Pease, TC, Newell, KJ, Malloy, LF, Lester, IEEE Photonics Tech. Lett., v. 12(#1), 4 (2000).Google Scholar
16 Fewster, P.F.,Appl. Surf. Sci. 50(1-4), 9 (1991b).Google Scholar
17 Fewster, P.F., J. Appl. Crystallogr. 24, 178 (1991a).Google Scholar
18 Hull, D. and Bacon, D.J., Introduction to Dislocations, 3rd edition (International Series on Materials Science and Technology, Vol. 37, 1997), pp. 1209 Google Scholar
19 Gray, A.L, Stintz, A., Malloy, K.J, Newell, T.C. and Lester, L.F., J. Cryst. Growth, 222/4, 726, (2001).Google Scholar
20 Lee, S.R. and Floro, J.A., Mat. Res. Soc. Symp. Proc., 399, 455 (1996).Google Scholar