Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T17:21:10.332Z Has data issue: false hasContentIssue false

In2O3 nanowire mat devices as high performance NO2 gas sensors

Published online by Cambridge University Press:  01 February 2011

Daihua Zhang
Affiliation:
Department of Electrical Engineering - Electrophysics, University of Southern California, Los Angeles, California 90089, U. S. A
Zuqin Liu
Affiliation:
Department of Electrical Engineering - Electrophysics, University of Southern California, Los Angeles, California 90089, U. S. A
Chongwu Zhou
Affiliation:
Department of Electrical Engineering - Electrophysics, University of Southern California, Los Angeles, California 90089, U. S. A
Get access

Abstract

A high sensitive and reliable In2O3 nanowire mat devices are fabricated. Detection of NO2 gas down to ppb levels was achieved. This represents orders-of-magnitude improvement over previously reported metal oxide film or nanowire/nanobelt sensors. Furthermore, this simple device shows certain selectivity to NO2 with other common chemicals such as NH3, O2, CO and H2 around.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Xia, Y. N., Yang, P. D., Sun, Y. G., Wu, Y. Y., Mayers, B., Gates, B., Yin, Y. D., Kim, F., Yan, Y. Q., Adv. Mater. 15, 353 (2003).Google Scholar
2. Kong, J., Franklin, N. R., Zhou, C. W., Chapline, M. G., Peng, S., Cho, K. J., Dai, H. J., Science, 287, 622 (2000).Google Scholar
3. Qi, P., Vermesh, O., Grecu, M., Javey, A., Wang, Q., Dai, H. J., Nano. Lett. 3, 347 (2003).Google Scholar
4. Li, J., Lu, Y., Cinke, M., Han, J., Meyyappan, M., Nano. Lett. 3, 929 (2003).Google Scholar
5. Law, M., Kind, H., Messer, B., Kim, F., Yang, P. D., Angew. Chem. Int. Edit. 41, 2405 (2002).Google Scholar
6. Li, C., Zhang, D. H., Liu, X. L., Han, S., Tang, T., Han, J., Zhou, C. W., Appl. Phys. Lett. 82, 1613 (2002).Google Scholar
7. Comini, E., Faglia, G., Sberveglieri, G., Pan, Z. W., Wang, Z. L., Appl. Phys. Lett. 81, 1869 (2002).Google Scholar
8. Huang, J. X., Virji, S., Weiller, B. H., Kaner, R. B., J. Am. Chem. Soc. 125, 314 (2003).Google Scholar
9. Murray, B. J., Walter, E. C., Penner, R. M., Nano. Lett. 4, 665 (2004).Google Scholar
10. Kolmakov, A., Zhang, Y. X., Cheng, G. S., Moskovits, M., Adv. Mater. 15, 997 (2003).Google Scholar
11. Liu, H. Q., Kameoka, J., Czaplewski, D. A., Craighead, H. G., Nano. Lett. 4, 671 (2004).Google Scholar
12. U.S. environmental protection agency, “Air Trends Summery Report”, http://www.epa.gov/oar/aqtrnd95/no2.html. Google Scholar
13. Shieh, J., Feng, H. M., Hon, M. H., Juang, H. Y., Sens. Actuators. B 86, 75 (2002).Google Scholar
14. Winter, R., Scharnagl, K., Fuchs, A., Doll, T., Eisele, I., Sens. Actuators. B 66, 85 (2000).Google Scholar
15. Steffes, H., Imawan, C., Solzbacher, F., Obermeier, E., Sens. Actuators. B 78, 106 (2001).Google Scholar
16. Jones, T. A., Bott, B., Sens. Actuators. 9, 27 (1986).Google Scholar
17. Xie, D., Jiang, Y., Pan, W., Li, D., Wu, Z., Li, Y., Sens. Actuators. B 90, 163 (2003).Google Scholar
18. Li, C., Zhang, D. H., Han, S., Liu, X. L., Tang, T., Zhou, C. W., Adv. Mater. 15, 143 (2003).Google Scholar
19. Zhang, D. H., Li, C., Liu, X. L., Han, S., Tang, T., Zhou, C. W., Appl. Phys. Lett. 83, 1845 (2003).Google Scholar