Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T20:36:20.454Z Has data issue: false hasContentIssue false

In2O3 Based Multicomponent Oxide Transparent Conducting Films Prepared by R.F. Magnetron Sputtering

Published online by Cambridge University Press:  10 February 2011

Tadatsugu Minami
Affiliation:
Electron Device System Laboratory, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi, Ishikawa 921-8501, Japan
Toshihiro Miyata
Affiliation:
Electron Device System Laboratory, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi, Ishikawa 921-8501, Japan
Hidenobu Toda
Affiliation:
Electron Device System Laboratory, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi, Ishikawa 921-8501, Japan
Shingo Suzuki
Affiliation:
Electron Device System Laboratory, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi, Ishikawa 921-8501, Japan
Get access

Abstract

Transparent and conductive thin films using new multicomponent oxides consisting of a combination of different In2O3 based ternary compounds have been prepared on room temperature substrates by r.f. magnetron sputtering. Transparent and conductive (Ga,In)2O3-MgIn2O4, (Ga,In)2O3-Zn2In2O2, (Ga,In)2O3-In4Sn3O12, Zn2In2O5,-In4Sn3O12 and Zn21n2O5-MgIn2O4 films were prepared over the whole range of compositions in these multicomponent oxides. The electrical and chemical properties of the resulting films could be controlled by varying the composition in the target. The resistivity, band-gap energy, work function and etching rate of the resulting multicomponent oxide films ranged between the properties of the two ternary compound films. This paper also presents a discussion of a significant spatial distribution of resistivity found on the substrate of the multicomponent oxide films as a function of composition. The resistivity distribution is attributable to the oxygen concentration on the substrate surface rather than the bombardment effect of high energy particles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hartnagel, H.L., Dawar, A.L., Jain, A. K. and Jagadish, C., “Semiconducting Transparent Thin Films”, Chap.2 (Institute of Physics Publishing Bristol and Philadelphia, PA, 1995) p. 22.Google Scholar
2 Enoki, H., Nakayama, T. and Echigoya, J., Phys. Stat. Sol. (a), 129, p. 181(1992).Google Scholar
3 Yanagawa, K., Ohki, Y., Ueda, N., Omata, T., Hashimoto, T. and Kawazoe, H., Appl. Phys. Lett., 63, p.3335(1993).Google Scholar
4 Yanagawa, K., Ohki, Y., Omata, T., Hosono, H., Ueda, N. and Kawazoe, H., Appl. Phys. Lett., 65, p.406 (1994).Google Scholar
5 Ueda, N., Omata, T., Hikuma, N., Ueda, K., Mizoguchi, H.J., Hashimoto, T. and Kawazoe, H., Appl.Phys. Lett., 61, p. 1954(1992).Google Scholar
6 Un'no, H., Hikuma, N., Omata, T., Ueda, N., Hashimoto, T. and Kawazoe, H., Jpn. J. Appl. Phys., 32, L1260 (1993).Google Scholar
7 Minami, T, Sonohara, H., Takata, S. and Sato, H., Jpn, J. Appl. Phys., 33, L1693 (1994).Google Scholar
8 Minami, T., Takata, S., Sato, H. and Sonohara, H., J. Vac. Sci. Technol. A, 13, p. 1095 1995)Google Scholar
9 Cava, R.J., Phillips, J.M., Kwo, J., Thomas, G.A., Dover, R.B. van, Carter, S.A., Krajewski, J.J., Peck, W.F. Jr, HiMarshall, J. and Rapkine, D.H., Appl. Phys. Lett., 64, p.2071 (1994),Google Scholar
10 Phillips, J.M., Kwo, J., Thomas, G.A., Carter, S.A., Cava, R.J., Hou, S.Y., Krajewski, J. J., Marshall, J.H., Peck, W. F. Jr, Rapkine, D.H. and Dover, R.B. van, Appl. Phys. Lett., 65, p. 11:5(1994).Google Scholar
11 Minami, T., Sonohara, H., Kakumu, T. and Takata, S., Jpn. J. Appl. Phys., 34, L971 (1995).Google Scholar
12 Minami, T., Kakumu, T. and Takata, S., J. Vac. Sci. Technol. A 14, p. 1704 (1996).Google Scholar
13 Minami, T., Kakumu, T., Takeda, Y. and Takata, S., Thin Solid Films, 290/291, p.1 (1996).Google Scholar
14 Minami, T., Takeda, Y., Takata, S. and Kakumu, T., Thin Solid Films, 308–309, p. 13 (1997).Google Scholar
15 Minami, T., Kakumu, T., Shimokawa, K. and Takata, S., Thin Solid Films, 317, p.318 (1998).Google Scholar
16 Minami, T., J. Vac. Sci. Technol. A, 17, p. 1765(1999).Google Scholar
17 Minami, T., Takata, S. and Kakumu, T., J. Vac. Sci. Technol. A, 14, p.1689 (1996).Google Scholar
18 Minami, T., Takeda, Y.. Kakumu, T., Takata, S. and Fukuda, I., J. Vac. Sci. Technol. A, 15, p.958(1997).Google Scholar
19 Minami, T., Sonohara, H., Takata, S. and Sato, H., J. Vac. Sci. Technol. A, 13, p.1095 (1995).Google Scholar
20 Minami, T., Takata, S., Kakumu, T. and Sonohara, H., Thin Solid Films, 270, p22 (1995).Google Scholar
21 Minami, T., Nanto, H., Sato, H. and Takata, S., Thin Solid Films, 164, p.275 (1988).Google Scholar
22 Webb, J.B, Thin Solid Films, 136, p. 135(1986).Google Scholar
23 Torninaga, K., Yuasa, T., Kume, M. and Tada, O., Jpn. J. Appl. Phys. 24, p.944 (1985).Google Scholar
24 Ishibashi, S., Higuchi, Y., Ota, Y. and Nakamura, K., J. Vac. Sci. Technol. A, 8, p1403 (1990).Google Scholar
25 Ichihara, K., Inoue, N., Okubo, M. and Yasuda, N., Thin Solid Films, 245, p152 (1994).Google Scholar