Article contents
In2O3 Based Multicomponent Oxide Transparent Conducting Films Prepared by R.F. Magnetron Sputtering
Published online by Cambridge University Press: 10 February 2011
Abstract
Transparent and conductive thin films using new multicomponent oxides consisting of a combination of different In2O3 based ternary compounds have been prepared on room temperature substrates by r.f. magnetron sputtering. Transparent and conductive (Ga,In)2O3-MgIn2O4, (Ga,In)2O3-Zn2In2O2, (Ga,In)2O3-In4Sn3O12, Zn2In2O5,-In4Sn3O12 and Zn21n2O5-MgIn2O4 films were prepared over the whole range of compositions in these multicomponent oxides. The electrical and chemical properties of the resulting films could be controlled by varying the composition in the target. The resistivity, band-gap energy, work function and etching rate of the resulting multicomponent oxide films ranged between the properties of the two ternary compound films. This paper also presents a discussion of a significant spatial distribution of resistivity found on the substrate of the multicomponent oxide films as a function of composition. The resistivity distribution is attributable to the oxygen concentration on the substrate surface rather than the bombardment effect of high energy particles.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2000
References
- 1
- Cited by