Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T02:05:46.319Z Has data issue: false hasContentIssue false

In vitro Evaluation of Arabinoxylan Gels as an Oral Delivery System for Insulin

Published online by Cambridge University Press:  28 November 2012

E. Carvajal-Millan
Affiliation:
CTAOA, Laboratory of Biopolymers
C. Berlanga-Reyes
Affiliation:
CTAOA, Laboratory of Biopolymers
A. Rascón-Chu
Affiliation:
CTAOV. Research Center for Food and Development, CIAD, A.C. Carretera a La Victoria Km. 0.6, Hermosillo, Sonora, 83000 Mexico.
A. L. Martínez-López
Affiliation:
CTAOV. Research Center for Food and Development, CIAD, A.C. Carretera a La Victoria Km. 0.6, Hermosillo, Sonora, 83000 Mexico.
J. A. Márquez-Escalante
Affiliation:
CTAOA, Laboratory of Biopolymers
A. C. Campa-Mada
Affiliation:
CTAOA, Laboratory of Biopolymers
K. G. Martínez-Robinson
Affiliation:
CTAOA, Laboratory of Biopolymers
Get access

Abstract

Arabinoxylan gels are receiving increasing attention as oral delivery systems of biomolecules for therapeutic purposes. The aim of this research was to evaluate arabinoxylan gels as an oral delivery system for insulin, representing a painless therapy for diabetics. Gels at two concentrations of arabinoxylan were prepared (2.5 and 3.5 % w/v). One concentration of insulin (0.05 % w/v) entrapped in the arabinoxylan gels was investigated. At the end of gelation elasticity (G’) values were 11 and 20 for gels at 2.5 and 3.5% (w/v) in arabinoxylan, respectively. The presence of insulin in the gels did not affect the values of G’. The apparent diffusion coefficient for insulin decreased from 1.30 x 10-7 to 1.09 x 10-7 cm2/s when the concentration of arabinoxylan in the gel increased from 2.5 to 3.5% (w/v). The percentage of proteolysis for insulin entrapped in the gels at 2.5 and 3.5% in arabinoxylan (w/v) were 35 and 17%, respectively, in relation to 100% hydrolysis of insulin in solution. Results indicate that arabinoxylan gels could be potential candidates as oral delivery systems for insulin.

Type
Articles
Copyright
Copyright © Materials Research Society 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Peppas, N.A., Bures, P., Leobandung, W., Ichikawa, H. Eur. J. Pharm. Biopharma. 50, 27 (2000).CrossRefGoogle Scholar
Hennink, W.E., van Nostrum, C.F. Adv. Drug Delivery Rev. 54, 13 (2002).CrossRefGoogle Scholar
Brondsted, H., Hovgaard, L., Simonsen, L. Eur. J. Pharm. Biopharm. 42, 85 (1996).Google Scholar
Vansteenkiste, E., Babot, C., Rouau, X., Micard, V. Food Hydrocoll. 18, 557 (2004).CrossRefGoogle Scholar
Izydorczyk, M.S., Biliaderis, C.G. Carbohydr. Polym. 28, 33 (1995).CrossRefGoogle Scholar
Geissman, T., Neukom, H. Lebensm. Wiss. Technol. 6, 59 (1973).Google Scholar
Hoseney, R.C., Faubion, J.M. Cereal Chem. 58, 421 (1981).Google Scholar
Figueroa-Espinoza, M.C., Rouau, X. Cereal Chem. 75, 259 (1998).CrossRefGoogle Scholar
Carvajal-Millan, E., Guigliarelli, B., Belle, V., Rouau, X., Micard, V. Carbohydr. Polym. 59, 181 (2005).CrossRefGoogle Scholar
Carvajal-Millan, E., Landillon, V., Morel, M.H., Rouau, X., Doublier, J.L., Micard, V. Biomacromolecule. 6, 309 (2005).CrossRefGoogle Scholar
Berlanga-Reyes, C.M., Carvajal-Millan, E., Lizardi-Mendoza, J., Rascón-Chu, A., Marquez-Escalante, J.A., Martínez-Lopez, A.L. Molecule. 14, 1475 (2009).CrossRefGoogle Scholar
Martínez-López, A.L., Carvajal-Millan, E., Lizardi-Mendoza, J., López-Franco, Y.L., Rascón-Chu, A., Salas-Muñoz, E., Barron, C., Micard, V. Molecule. 16, 8410 (2011).CrossRefGoogle Scholar
Van Laere, K.M.J., Hartemink, R., Bosveld, M., Schols, H.A., Voragen, A.G.J. J. Agric. Food Chem. 48, 1644 (2000).CrossRefGoogle Scholar
Simpson, R.W., Shaw, J.E., Zimmet, P.Z. Diabetes Res. Clin. Pract. 59, 165 (2003).CrossRefGoogle Scholar
Amos, A.F., McCarty, D.J., Zimmet, P. Diabet. Med. 14, S1 (1997).3.3.CO;2-I>CrossRefGoogle Scholar
King, H., Aubert, R.E., Herman, W.H. Diabetes Care. 21, 1414 (1998).CrossRefGoogle Scholar
Wild, S., Roglic, G., Green, A., Sicree, R., King, H. Diabetes Care. 27, 1047 (2004).CrossRefGoogle Scholar
Carvajal-Millan, E., Rascón-Chu, A., Márquez-Escalante, J.A., Micard, V., Ponce de León, N., Gardea, A. Carbohydr. Polym. 69, 280 (2007).CrossRefGoogle Scholar
Amsden, B. Gels Network. 6, 13 (1998).CrossRefGoogle Scholar
Elbert, D.L., Pratt, A.B., Lutolf, M.P., Halstenberg, S., Hubbell, J.A. J. Control. Rel. 76, 11 (2001).CrossRefGoogle Scholar
Carvajal-Millan, E., Guilbert, S., Doublier, J.L., Micard, V. Food Hydrocol. 20, 53 (2006).CrossRefGoogle Scholar
Nauman, J.V., Campbell, P.G., Lanni, F., Anderson, J.L. Biophys. J. 92, 4444 (2007).CrossRefGoogle Scholar
Singnurkar, P.S., Gidwani, S.K. Indian J. Pharm. Sci. 70, 721 (2008).Google Scholar
Crittenden, R., Karppinen, S., Ojanen, S., Tenkanen, M., Fagerström, R., Mättö, J., Saarela, M., Mattila-Sandholm, T., Poutanen, K. J. Sci. Food Agric. 82, 781 (2002).CrossRefGoogle Scholar
Mirande, C., Mosoni, P., Béra-Maillet, C., Bernalier-Donadille, A., Forano, E. App. Microbiol. Biotechnol. 87, 2097 (2010).CrossRefGoogle Scholar
Broekaert, W.F., Courtin, C.M., Verbeke, K., Van de Wiele, T., Verstraete, W., Delcour, J.A. Crit. Rev. Food Sci. Nutr. 51, 178 (2011).CrossRefGoogle Scholar
Hopkins, M.J., Englyst, H.N., Macfarlane, S., Furrie, E., Macfarlane, G.T., McBain, A.J. Appl. Environ. Microbiol. 69, 6354 (2003).CrossRefGoogle Scholar
Bradford, M. Anal. Biochem. 72, 248 (1976).CrossRefGoogle Scholar
Crank, J. The mathematics of diffusion. (Oxford University Press, 1975) pp. 414.Google Scholar
Favre, E., Girard, S. Eur. Polym. J. 37, 1527 (2001).CrossRefGoogle Scholar