Article contents
In Situ TEM Investigation of Abnormal Grain Growth in Nanocrystalline Nickel
Published online by Cambridge University Press: 26 February 2011
Abstract
In situ transmission electron microscopy was used to show that nanocrystalline nickel produced by pulsed-laser deposition undergoes abnormal grain growth at moderate temperatures (225-400°C). The growth rate was found to increase with thickness for the three film thicknesses examined, 50, 80 and 150 nm. The abnormal growth proceeded in an irregular manner: initiation sites and growth direction were unpredictable, and the grains exhibited no preferred orientation. Some abnormal grains show internal boundaries such as twins, while others exhibited lattice misalignments across the grain body. The grains contain many defects, including dislocations, stacking faults and surprisingly, stacking fault tetrahedra. The stacking fault tetrahedra are not a result of quenching nor of electron irradiation-induced lattice displacements; they instead are thought to form from vacancies trapped in the growing grain as it incorporates lower-density material at the high-angle grain boundaries in the nanocrystalline matrix.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2006
References
- 1
- Cited by