Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T23:17:46.555Z Has data issue: false hasContentIssue false

In situ synchrotron radiation measurements of orthorhombic phase formation in an advanced TiAl alloy with modulated microstructure

Published online by Cambridge University Press:  02 February 2015

M. Rackel
Affiliation:
Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, D-21502 Geesthacht, Germany
A. Stark
Affiliation:
Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, D-21502 Geesthacht, Germany
H. Gabrisch
Affiliation:
Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, D-21502 Geesthacht, Germany
F.-P. Schimansky
Affiliation:
Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, D-21502 Geesthacht, Germany
N. Schell
Affiliation:
Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, D-21502 Geesthacht, Germany
A. Schreyer
Affiliation:
Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, D-21502 Geesthacht, Germany
F. Pyczak
Affiliation:
Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, D-21502 Geesthacht, Germany
Get access

Abstract

New low aluminium high niobium TiAl alloys exhibit a nano scale modulated microstructure consisting of lamellae with a tweed substructure. These tweed like appearing lamellae are a modulated arrangement of at least two phases. One constituent of the crystallographic modulation in the lamellae is an orthorhombic phase, which is closely related to both the hexagonal α2-Ti3Al phase and the cubic B2 ordered βo-TiAl phase.

In this study the nature and formation of this orthorhombic phase has been investigated by high-energy X-ray diffraction.

Measurements have shown that the newly formed orthorhombic phase is structurally comparable to the O phase (Ti2AlNb). It forms in the temperature range of 550 °C to 670 °C from the α2 phase by small atomic displacements and chemical reordering. The in situ experiments yielded information about the thermal stability of the orthorhombic phase. After dissolving at temperatures above 700 °C the phase can be re-precipitated by annealing within the temperature range of formation.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Appel, F., Paul, J.D.H., Oehring, M., Gamma Titanium Aluminide Alloys, Wiley-VCH 2011.CrossRefGoogle Scholar
Appel, F., Oehring, M., Paul, J.D.H., Advanced Engineering Materials, 8 (2006) 371376.CrossRefGoogle Scholar
Appel, F., Oehring, M., Paul, J.D.H., Materials Science and Engineering: A, 493 (2008) 232236.CrossRefGoogle Scholar
Appel, F., Paul, J.D.H., Oehring, M., Materials Science and Engineering: A, 510511 (2009) 342349.CrossRefGoogle Scholar
Gabrisch, H., Lorenz, U., Oehring, M., Paul, J., Pyczak, F., Rackel, M., Schimansky, F.-P., Stark, A., MRS Online Proceedings Library, 1516 (2013) 3540.Google Scholar
Schmoelzer, T., Stark, A., Schwaighofer, E., Lippmann, T., Mayer, S., Clemens, H., Advanced Engineering Materials, 14 (2012) 445448.CrossRefGoogle Scholar
Song, L., Xu, X.J., You, L., Liang, Y.F., Lin, J.P., Journal of Alloys and Compounds, 618 (2015) 305310.CrossRefGoogle Scholar
Stark, A., Textur- und Gefügeentwicklung bei der thermomechanischen Umformung Nb-reicher Gamma-TiAl-Basislegierungen, Shaker Verlag, 2010.Google Scholar
Nguyen-Manh, D., Pettifor, D.G., in: Kim, Y-W., Dimiduk, D. M., Loretto, M.H. (Eds.) Gamma Titanium Aluminides 1999, TMS, 1999, pp. 175182.Google Scholar
Muraleedharan, K., Banerjee, D., Banerjee, S., Lele, S., Philosophical Magazine A, 71 (1995) 10111036.CrossRefGoogle Scholar
Liss, K.-D., Bartels, A., Clemens, H., Bystrzanowski, S., Stark, A., Buslaps, T., Schimansky, F.-P., Gerling, R., Scheu, C., Schreyer, A., Acta materialia, 54 (2006) 37213735.CrossRefGoogle Scholar
Liss, K.-D., Bartels, A., Schreyer, A., Clemens, H., Textures and Microstructures, 35 (2003) 219252.CrossRefGoogle Scholar
Reimers, W., Pyzalla, A.R., Schreyer, A., Clemens, H., Neutron and Synchrotron Radiation in Engineering Materials Science, Wiley-VCH 2008.CrossRefGoogle Scholar
Gerling, R., Clemens, H., Schimansky, F.P., Advanced Engineering Materials, 6 (2004) 2338.CrossRefGoogle Scholar
Schell, N., King, A., Beckmann, F., Fischer, T., Müller, M., Schreyer, A., Materials Science Forum, 772 (2014) 5761.CrossRefGoogle Scholar
Staron, P., Fischer, T., Lippmann, T., Stark, A., Daneshpour, S., Schnubel, D., Uhlmann, E., Gerstenberger, R., Camin, B., Reimers, W., Eidenberger, E., Clemens, H., Huber, N., Schreyer, A., Advanced Engineering Materials, 13 (2011) 658663.CrossRefGoogle Scholar
Lutterotti, L., Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 268 (2010) 334340.CrossRefGoogle Scholar
Stark, A., Oehring, M., Pyczak, F., Schreyer, A., Advanced Engineering Materials, 13 (2011) 700704.CrossRefGoogle Scholar
Yeoh, L.A., Liss, K.-D., Bartels, A., Chladil, H., Avdeev, M., Clemens, H., Gerling, R., Buslaps, T., Scripta Materialia, 57 (2007) 11451148.CrossRefGoogle Scholar