Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T22:58:46.725Z Has data issue: false hasContentIssue false

In situ SAXS/XRD on mesoscopically ordered surfactant-silica mesophases; What can we learn?

Published online by Cambridge University Press:  01 February 2011

Mika Lindén
Affiliation:
Dept. Phys. Chem., Abo Akademi University, Porthansgatan 3–5, 20500 Turku, Finland
Cilaine V. Teixeira
Affiliation:
Dept. Phys. Chem., Abo Akademi University, Porthansgatan 3–5, 20500 Turku, Finland
Heinz Amenitsch
Affiliation:
Austrian Academy of Science, Schmiedlstrasse 6, 8043 Graz, Austria
Viveka Alfredsson
Affiliation:
Phys. Chem. 1, Lund University, 221 00 Lund, Sweden
Freddy Kleitz
Affiliation:
Dept. Heterogeneous Catalysis, Max-Planck Institute for Coal Research, Kaiser-Wilhelm-Platz 1, 45470 Mülheim/Ruhr, Germany
Get access

Abstract

In situ investigations have proven to be a very useful means of understanding the different processes involved in the formation of mesoporous materials. In this communication, we demonstrate the potential of in situ small angle x-ray scattering, SAXS and x-ray diffraction, XRD, measurements for giving both qualitative and quantitative results on the structural evolution during the early stages of the surfactant-silicate composite formation. The examples given are based on results obtained for 2D hexagonal structures, synthesized both under acidic and alkaline conditions. Careful analysis of both the scattering and diffraction patterns allows the different stages of the formation to be described in some detail. Thus, new synthesis approaches can be foreseen that allow the structure of the final hybrid mesophase to be rationally controlled.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Zhang, J., Luz, Z. and Goldfarb, D., J. Phys. Chem. B 101, 7087 (1997)Google Scholar
2 Zhang, J., Carl, P. J., Zimmermann, H. and Goldfarb, D., J. Phys. Chem. B 106, 5238 (2002)Google Scholar
3 Lindén, M., Schunk, S.A. and Schüth, F., Angew. Chem. Int. Ed. 37, 821 (1998)Google Scholar
4 Ågren, P., Lindén, M., Rosenholm, J.B., Schwarzenbacher, R., Kriechbaum, M., Amenitsch, H., Laggner, P., Blanchard, J. and Schüth, F., J. Phys. Chem. B 103, 5943 (1999)Google Scholar
5 Lindén, M., Ågren, P., Karlsson, S., Bussian, P. and Amenitsch, H., Langmuir 16, 5831 (2000)Google Scholar
6 Kleitz, F., Blanchard, J., Zibrowius, B., Schüth, F., Ågren, P. and Lindén, M., Langmuir 18, 4963 (2002)Google Scholar
7 Lind, A., Andersson, J., Karlsson, S., Ågren, P., Bussian, P., Amenitsch, H. and Lindén, M., Langmuir 18, 1380 (2002)Google Scholar
8 Ågren, P., Lindén, M., Rosenholm, J.B., Blanchard, J., Schüth, F. and Amenitsch, H., Langmuir 16, 8809 (2000)Google Scholar
9 Tiemann, M., Goletto, V., Blum, R., Babonneau, F., Amenitsch, H. and Lindén, M., Langmuir 18, 10053 (2002)Google Scholar
10 Frasch, J., Lebeau, B., Soulard, M., Patarin, J. and Zana, R., Langmuir 16, 9049 (2000)Google Scholar
11 Regev, O. Langmuir 12, 4940 (1996)Google Scholar
12 Pevzner, S., Regev, O., Lind, A. and Linden, M., J. Am. Chem. Soc. 125, 652 (2003)Google Scholar
13 Flodström, K., Wennerström, H. and Alfredsson, V., Langmuir 20, 680 (2004)Google Scholar
14 Holmes, S.M., Zholobenko, V.L., Thursfield, A., Plaisted, R.J., Cundy, C.S. and Dwyer, J., J. Chem. Soc., Faraday Trans. 94, 2025 (1998)Google Scholar
15 Kresge, C. T., Leonowicz, M. E., Roth, W. J. and Vartuli, J. C., Nature 359, 710 (1992);Google Scholar
Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C.T-W., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B. and Schlenker, J. L., J. Am. Chem. Soc., 114, 10834 (1992)Google Scholar
16 Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F. and G.D, : Stucky, Science 279, 548 (1998)Google Scholar
17 Flodström, K., Teixeira, C.V., Amenitsch, H., Alfredsson, V. and Linden, M., Langmuir 20, 4885 (2004)Google Scholar
18 Porod, G., in “Small Angle X-ray Scattering”, Edited by Glatter, O. and Kratky, O., Academic Press (1982)Google Scholar
19 Harper, P.E., Mannock, D.A., Lewis, R.N.A.H., McElhaney, R.N. and Gruner, M., Biophys. J. 81, 2693 (2001)Google Scholar
20 Warren, B.E., X-ray diffraction, Addison Wesley (1969)Google Scholar
21 Amenitsch, H., private communcationGoogle Scholar
22 Alfredsson, V., Keung, M., Monnier, A., Stucky, G.D., Unger, K.K. and Schüth, F., J. Chem. Soc., Chem. Commun. 921 (1994)Google Scholar
23 Beurroies, I., Ågren, P., Rosenholm, J.B., Amenitsch, H., Denoyel, R. and Lindén, M., M. submitted.Google Scholar
24 Feuston, B.P. and Higgins, J.B., J. Phys. Chem. 98, 4459 (1994)Google Scholar
25 Sauer, J., Marlow, F. and Schüth, F., Phys. Chem. Chem. Phys. 3, 5579 (2001)Google Scholar
26 Sadasivan, S., Fowler, C.E., Khushalani, D. and Mann, S., Angew. Chem. Int. Ed. 41, 2151 (2002)Google Scholar
27 Gross, A. F., Ruiz, E. J. and Tolbert, S. H., J. Phys. Chem. B 104, 5448 (2000)Google Scholar