Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T15:44:10.452Z Has data issue: false hasContentIssue false

In Situ Quantitative Plasmon Spectroscopic Determination and Imaging of Multiple SolidState Properties at the Nanoscale: a New Capability for Material Research

Published online by Cambridge University Press:  01 February 2011

Vladimir P. Oleshko
Affiliation:
University of Virginia, Department of Materials Science & Engineering, Charlottesville, VA 22904–4745, USA
James M. Howe
Affiliation:
University of Virginia, Department of Materials Science & Engineering, Charlottesville, VA 22904–4745, USA
Get access

Abstract

Measuring material properties is critical to understanding the behavior of contemporary nanostructured materials. In this paper, we show that as a consequence of the universal binding energy relation (UBER), universal features and strong scaling correlations exist between the volume plasmon energy and cohesive energy, valence electron density, elastic constants and hardness of various materials with metallic and covalent bonding. Based on these relations, we propose novel techniques that allow direct measurement and imaging of material properties in situ using valence electron energy-loss spectroscopy combined with energy-filtering transmission electron microscopy. This is illustrated by evaluation of elastic and cohesive properties of individual metastable nanoprecipitates in structural alloys and hardness of diesel-engine soot particles. The results demonstrate that new plasmon spectro-microscopic techniques have the potential to determine quantitatively and image multiple solid-state properties at the nanoscale, establishing a new capability for material research.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Oleshko, V., Gijbels, R. and Amelinckx, S., in Encyclopedia of Analytical Chemistry. ed. Meyers, R.A., (Wiley, 2000), pp. 90889120.Google Scholar
[2] Williams, D. B. and Edington, J.W., J. Microsc. 108 (2), 113145 (1976).Google Scholar
[3] Oleshko, V., Amkreutz, M. and Overhof, H., Phys. Rev. B 67, 115409 17 (2003).Google Scholar
[4] Pines, D., Rev Mod. Phys. 28 (3), 184198 (1956).Google Scholar
[5] Horie, C., Prog. Theor. Phys., 21, 113134 (1959).Google Scholar
[6] Mothioux, M., Soutric, F. and Serin, V., Carbon 35, 16601664 (1997).Google Scholar
[7] Gilman, J. J., Phil. Mag. 79 (4), 643654 (1999).Google Scholar
[8] Oleshko, V. P., Murayama, M. and Howe, J. M., Microsc. Microanal. 8 (4), 350364 (2002).Google Scholar
[9] Laffont, L., Monthioux, M. and Serin, V., Carbon 40, 767780 (2002).Google Scholar
[10] Daniels, H. R., Brydson, R., Brown, A. and Rand, B., Ultramicroscopy 96, 547–558 (2003).Google Scholar
[11] Dudzinsky, N., J. Inst. Metals 81, 4955 (1952).Google Scholar
[12] Rose, J. H., Smith, J. R., Guinea, F. and Ferrante, J., Phys. Rev. B 29 (6), 29632969 (1984).Google Scholar
[13] Oleshko, V. P. and Howe, J. M., in Mechanical Properties of Nanostructured Materials and Nanocomposites, ed. Krishnamoorti, R., et al., (Mater. Res. Soc. Proc. 791, Warrendale, PA, 2004) pp. Q9.5.17.Google Scholar
[14] Howe, J. M. and Oleshko, V. P., J. Electron Microsc. 53 (4), 339351 (2004).Google Scholar
[15] Hunt, J. A. and Williams, D. B., Ultramicroscopy 38, 6773 (1991).Google Scholar
[16] Mondolfo, L. F., Al Alloys: Structure&Properties (Butterworths, London. UK, 1979), p. 253.Google Scholar
[17] Banerjea, A. and Smith, J. R., J. Phys. Rev. 37 (12), 66326645 (1988).Google Scholar
[18] Miedema, A. R. and Boom, R., Z. Metallkunde 69 (3), 183190 (1978).Google Scholar
[19] Moruzzi, V. L., Janak, J. F. and Williams, A. R., Calculated Electronic Properties of Metals (Pergamon, NY, 1978), pp. 2329.Google Scholar
[20] Kovarik, P., Bourdon, E. B. D. and Prince, R. H., Phys. Rev. B 48 (16), 1212312129 (1993).Google Scholar