Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T15:29:29.208Z Has data issue: false hasContentIssue false

In Situ Monitoring of Interfaces and Growth of Amorphous Silicon by Spectroellipsometry

Published online by Cambridge University Press:  21 February 2011

B. Drevillon*
Affiliation:
Laboratoire de Physique des Interfaces et des Couches Minces (UPR 258 du CNRS) Ecole Polytechnique, 91128 Palaiseau, France.
Get access

Abstract

Recent applications of spectroscopie phase modulated ellipsometry, from 0.25 to 11 μm, to study the growth of plasma deposited thin film semiconductors like amorphous (a-Si:H) silicon are reviewed. The high sensitivity of this technique is emphasized. In the infrared (IR), the hydrogen incorporation during a-Si:H growth can be precisely investigated. Photoelectronic quality a-Si:H films grow beneath a hydrogen rich overlayer (a few monolayers thick) containing SiH2. the hydrogen being bonded as SiH in the bulk material. In the ultraviolet (UV) range, the ability of kinetic ellipsometry, with fast time resolution, to study interfaces formation is illustrated. Examples of sharp interfaces are presented. In the case of amorphous silicon-silicon nitride structures, it is shown that an inversion of the deposition sequence of the various layers can lead to a graded transition. A detailed analysis of a growth process involving a chemical reaction with the substrate is illustrated in the case the a-Si:H / Pd interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] For a review see LeComber, P. G., J. Non-Cryst. Solids 115, 1 (1989)Google Scholar
[2] Street, R. A. and Thompson, M.J., Appl. Phys. Lett. 45, 769 (1984)Google Scholar
[3] Hiranaka, K., Yoshimura, T. and Yamaguchi, T., Jpn. J. Appl. Phys. 28, 2197 (1989)Google Scholar
[4] Yang, L., Abeles, B., Eberhardt, W., Stasieski, H. and Sondericker, D., Phys. Rev. B35, 9395 (1987)CrossRefGoogle Scholar
[5] Baudoin, M., Arsenault, C. J., Izquierdo, R. and Meunier, M., Appl. Phys. Lett. 55, 2640 (1989)Google Scholar
[6] Tsai, C. C., Thompson, M.J., Street, R.A., Stutzmann, M. and Ponce, F., J. Non-Cryst. Solids 22&78, 995 (1985)Google Scholar
[7] Collins, R. W., Advances in disordered semiconductors Vol. I, ed. Fritsche, H. (World Scientific, Singapore 1989), p. 1003.Google Scholar
[8] Drévillon, B., J. Non-Cryst. Solids 114, 139 (1989)Google Scholar
[9] Collins, R. W., Rev. Sci. Instrum. 61, 2029 (1990)Google Scholar
[10] Drévillon, B., Perrin, J., Marbot, R., Violet, A. and Dalby, J.L., Rev. Sci. Instrum. 53, 969 (1982)CrossRefGoogle Scholar
[11] Drévillon, B., Parey, J.Y., Stchakovsky, M., Benferhat, R., Josserand, Y. and Schlayen, B., SPIE Symp. Proc. 1188, 174 (1990)Google Scholar
[12] Kumar, S. and Drévillon, B., J. Appl. Phys. 65, 3023 (1989)Google Scholar
[13] Drévillon, B., Kumar, S., Roca i Cabarrocas, P. and Siefert, J.M., Appl. Phys. Lett. 54, 2088 (1989)Google Scholar
[14] Parsons, G.N., Appl. Phys. Lett. 59, 2546 (1991)Google Scholar
[15] Roca i Cabarrocas, P. and Eicker, U., Proc. tenth E.C. Photov. Solar Energy Conf., Luque, A. et al. ed., Kluwer Academic Publishers, p. 335 (1991).Google Scholar
[16] Roca i Cabarrocas, P., Stchakovsky, M., Drévillon, B., Fortuna, F. and Bernas, H., J. Non-Cryst. Solids 137&138, 1055 (1991)Google Scholar
[17] Ley, L., Reichardt, J. and Johnson, R. L., Proc. 17 th Intern. Conf. Phys. Semiconductors, Chadi, J.D. and Harriso, W.A. eds. (Springer, New York 1985) p. 811 Google Scholar
[18] Lin, G.H., Doyle, J.R., He, M. and Gallagher, A., J. Appl. Phys. 64, 188 (1988)CrossRefGoogle Scholar
[19] Maley, N., Szafranek, I., Mandreli, L., Katiyar, M., Abelson, J.R. and Thornton, J.A., J. Non-Cryst. Solids 114, 163 (1989)Google Scholar
[20] Toyoshima, Y., Arai, K., Matsuda, A. and Tanaka, K., Appl. Phys. Lett. 57, 1028 (1990)Google Scholar
[21] Blayo, N. and Drévillon, B., Appl. Phys. Lett. 59, 950 (1991)Google Scholar
[22] Blayo, N. and Drévillon, B., J. Non-Cryst. Solids 137&138, 771 (1991)CrossRefGoogle Scholar
[23] Blayo, N. and Drévillon, B., Surf. Sci. 260, 37 (1992)Google Scholar
[24] Chu, V., Fang, M. and Drévillon, B., J. Appl. Phys. 69, 3363 (1991)Google Scholar
[25] Stchakovsky, M., Drévillon, B. and Roca i Cabarrocas, P., J. Appl. Phys. 70, 2132 (1991)Google Scholar
[26] Yakovlev, V., Drévillon, B., Layadi, N. and Roca i Cabarrocas, P., Appl. Phys. Lett, (to be published)Google Scholar
[27] Acher, O., Bigan, E. and Drévillon, B., Rev. Sci. Instrum. 60, 65 (1989)Google Scholar
[28] Blayo, N., Drévillon, B. and Ossikovski, R., SPIE Symp. Proc. 1681 (in press)Google Scholar
[39] Wilbers, A.T.M., Kroesen, G.M.W., Timmermans, C.J. and Schram, D.C., Meas. Sci. Technol. 1 (1990) 1326 Google Scholar
[30] Drévillon, B. and Benferhat, R., J. Appl. Phys. 63, 5088 (1988)CrossRefGoogle Scholar
[31] Antoine, A.M., Drévillon, B. and Roca i Cabarrocas, P., J. Appl. Phys. 61, 2501 (1987)Google Scholar
[32] Cardona, M., Phys. Stat. Sol. (b) 118, 463 (1983) and references therein.Google Scholar
[33] Shanks, H.R., Jeffrey, F.R. and Lowry, M.E., J. Phys. (Paris) 42 C4773 (1981)Google Scholar
[34] Chu, V., Fang, M. and Drévillon, B., J. Appl. Phys. 69, 13 (1991)Google Scholar
[35] Antoine, A.M. and Drévillon, B., J. Appl. Phys. 63, 360 (1987)CrossRefGoogle Scholar
[36] Hung, L.S., Kennedy, E.F., Palmstrom, C.J., Olowolafe, J.O., Mayer, J.W. and Rhodes, H., Appl. Phys. Lett. 47, 236 (1985)Google Scholar
[37] Viguier, C., Thèse de Doctorat, Université Aix-Marseille II (1987), in French.Google Scholar