Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-20T00:46:15.079Z Has data issue: false hasContentIssue false

In Situ Growth Studies of Artificial Layered (BA,SR,CA)CUO2 on Quasi-Ideal SrTiO3 Substrates by High Pressure Rheed

Published online by Cambridge University Press:  10 February 2011

Gertjan Koster
Affiliation:
Dept. of App. Phys., Low Temperature Div., University of Twente, PO box 217, 7500 AE, Enschede, The Netherlands.
Guus J.H.M. Rijnders
Affiliation:
Dept. of App. Phys., Low Temperature Div., University of Twente, PO box 217, 7500 AE, Enschede, The Netherlands.
Dave H.A. Blank
Affiliation:
Dept. of App. Phys., Low Temperature Div., University of Twente, PO box 217, 7500 AE, Enschede, The Netherlands.
Horst Rogalla
Affiliation:
Dept. of App. Phys., Low Temperature Div., University of Twente, PO box 217, 7500 AE, Enschede, The Netherlands.
Get access

Abstract

The layered structure of oxides, like the high-T, cuprates, has been topic of research for some years now. The possibility to control thin film deposition on an atomic level has made fabrication of artificial structures and junctions accessible by depositing atomic layers or molecular blocks sequentially. Perfectly smooth substrate surfaces are hereby a prerequisite.

Using Pulsed Laser Deposition (PLD), different perovskite oxide materials have been deposited on SrTiO3 substrates. With in situ high pressure Reflection High Energy Electron Diffraction we studied growth at different temperatures and oxygen pressures. Ex situ XRD and AFM have been used to study the morphology after deposition.

Here we applied a new approach in obtaining layer-by-layer growth implied by the way of depositing the material, almost regardless of the deposition conditions. By alternating intervals of high supersaturation depositing one unit cell layer with intervals of lower supersaturation, one is able to force a layer-by-layer growth mode, which is in principle only feasible with PLD. We applied this technique to fabricate the layered infinite structure (Ba,Sr,Ca)CuO2 with artificial layered modulation, which have been characterized by XRD and AFM.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Norton, D.P., Budai, J.D., Lowndes, D.H., Chakoumakos, B.C., Appl. Phys. Lett. 65, 2869 (1994)10.1063/1.112519Google Scholar
2 Tsukamoto, A., Wen, J.G., Nakanishi, K., Tanabe, K., Physica C 292, 17 (1997)10.1016/S0921-4534(97)01629-8Google Scholar
3 Norton, D.P., Chakoumakos, B.C., Budai, J.D., Lowndes, D.H., Sales, B.C., Thompson, J.R., Christen, D.K., Science 265, 2074 (1994)10.1126/science.265.5181.2074Google Scholar
4 Balestrino, G., Martellucci, S., Medaglia, P.G., Paoletti, A., Petrocelli, G., Phys. C 302, 78 (1998)10.1016/S0921-4534(98)00143-9Google Scholar
5 Norton, David P., Chakounakos, B.C., Lowndes, D.H. and Budai, J.D., Appl. Surf Sci 96–98, 672 (1996)10.1016/0169-4332(95)00542-0Google Scholar
6 Rijnders, Guus J.H.M., Koster, Gertjan, Blank, Dave H.A., and Rogalla, Horst, Appl. Phys. Lett 70, 1888 (1997)10.1063/1.118687Google Scholar
7 Koster, G., Rijnders, A.J.H.M., Blank, D.H.A. and Rogalla, H., submitted to APL.Google Scholar
8 Kawasaki, M., Takahashi, K., Maeda, T., Tsuchiya, R., Shinohara, M., Ishiyama, O., Yonezawa, T., Yoshimoto, M. and Koinuma, H., Science 226, 1540 (1994)10.1126/science.266.5190.1540Google Scholar
9 Koster, G., Rijnders, A.J.H.M, Blank, D.H.A. and Rogalla, H., Appl. Phys. Lett. 73, 2920 (1998)10.1063/1.122630Google Scholar
10 EnrafNonius CAD4 diffractometerGoogle Scholar
11 Karpinski, J., Mangelschots, I., Schwer, H., Conder, K., Morawski, A., Lada, T. and Paszewin, A., Physica C 234–240, 917 (1994)10.1016/0921-4534(94)91683-7Google Scholar
12 Takano, M., Takeda, Y., Okada, H., Miyamoto, M. and Kusaka, T., Physica C 159 375 (1989)10.1016/S0921-4534(89)80007-3Google Scholar
13 Kanai, Masaki, Kawai, Tomoji, Kawai, Shichio, Appl. Phys. Lett. 58, 771 (1991)10.1063/1.104543Google Scholar
14 Niu, C. and Lieber, C. M., J. Am. Chem. Soc. 114, 3570 (1992)10.1021/ja00035a070Google Scholar
15 Norton, D.P., Chakoumakos, B.C., Budai, J.D., Lowndes, D.H., Appl. Phys. Lett. 62, 1679 (1993)10.1063/1.109574Google Scholar
16 Gonda, S., Nagata, H., Kawasaki, M., Yoshimoto, M., Koinuma, H., Physica C 216, 160 (1993)10.1016/0921-4534(93)90647-9Google Scholar
17 Gupta, A., Chem, M.Y., Hussey, B.W., Physica C 209, 175 (1993)10.1016/0921-4534(93)90899-2Google Scholar
18 Gupta, A., Hussey, B.W., Shaw, T.M., Guloy, A.M., Chem, M.Y., Saraf, R.F. and Scott, B.A., J. of Solid State Chem. 112, 113 (1994)10.1006/jssc.1994.1274Google Scholar
19 Balestrino, G., Desfeux, R., Martellucci, S., Paoletti, A., Petrocelli, G., Tebano, A., Mercey, B. and Hervieu, M., J. Mater Chem. 5, 1879 (1995)10.1039/JM9950501879Google Scholar
20 Kawayama, I., Kanai, M., Kawai, T., Jpn. J. Appl. Phys. 35, L926 (1996)10.1143/JJAP.35.L926Google Scholar