Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T15:20:05.451Z Has data issue: false hasContentIssue false

In Situ Ellipsometric Studies of Palladium Silicide Formation

Published online by Cambridge University Press:  26 February 2011

S. M. Kelso
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304
R. J. Nemanich
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304
C. M. Doland
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304
Get access

Abstract

We have studied the formation of palladium suicide on clean silicon <111> surfaces using in situ spectroscopie ellipsometry. Pd films of thicknesses from 5 to 50 A were studied both as deposited and after annealing to complete the reaction to Pd2Si. The measured dielectric function spectra were analyzed to determine the amounts of Pd2Si and unreacted Pd. Evidence of Pd-Si solid state reaction was detected after all depositions. In the as-deposited films the fraction of suicide increased with the thickness, up to about 40% for the thickest films (50 Å Pd), while the annealed films were completely reacted. These results are consistent with earlier Raman spectroscopy studies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nemanich, R. J., Tsai, C. C., Thompson, M. J., and Sigmon, T. W., J. Vac. Sci. Technol. 19, 685 (1981).Google Scholar
2. Kirchner, C. J., Solid State Electron. 14, 507 (1971);Google Scholar
Sigurd, D., van der Weg, W., Bower, R., and Mayer, J. W., Thin Solid Films 19, 319 (1974).Google Scholar
3. Ho, P. S., Rubloff, G. W., Lewis, J. E., Moruzzi, V. L., and Willimas, A. R., Phys. Rev. B22, 4784 (1980);Google Scholar
Rubloff, G. W., Ho, P. S., Freeouf, J. F., and Lewis, J. E., Phys. Rev. B23, 4183 (1981).Google Scholar
4. Ho, P. S., Schmid, P. E., and Fohl, H., Phys. Rev. Lett. 46, 782 (1981).Google Scholar
5. Nemanich, R. J. and Doland, C. M., J. Vac. Sci. Technol. B3, 1142 (1985).Google Scholar
6. Aspnes, D. E. and Studna, A. A., Appl. Opt. 14, 220 (1975); SPIE Proc. 112, 62 (1977); Rev. Sci. Instrum. 49, 291 (1978).Google Scholar
7. Bruggeman, D. A. G., Ann. Phys. (Leip.) 24, 636 (1935).Google Scholar
8. Aspnes, D. E., Theeten, J. B., and Hottier, F., Phys. Rev. B20, 3292 (1979).Google Scholar
9. Aspnes, D. E. and Studna, A. A., Phys. Rev. B27, 985 (1983).Google Scholar
10. Weaver, J. H., Krafka, C., Lynch, D. W., and Koch, E. E., Physik Daten/Physics Data Nr. 18–1, Optical Properties of Metals, Pt. 1 (Fachinformationszentrum Energie · Physik · Mathematik GmbH, Karlsruhe, FRG), pp. 179190.Google Scholar
11. Nemanich, R. J., Ponce, F. A., Fulks, R. T., and Doland, R. T., this proceedings.Google Scholar