Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-09-13T14:41:35.543Z Has data issue: false hasContentIssue false

In Situ Diagnostics of Vuv Laser Cvd of Semiconductor Interfaces by Ftir Spectroscopy and Spectroscopic Ellipsometry

Published online by Cambridge University Press:  15 February 2011

M. Barth
Affiliation:
Institute of Physical Chemistry, University of Heidelberg, D-69120 Heidelberg
J. Knobloch
Affiliation:
Institute of Physical Chemistry, University of Heidelberg, D-69120 Heidelberg
P. Hess
Affiliation:
Institute of Physical Chemistry, University of Heidelberg, D-69120 Heidelberg
Get access

Abstract

The growth of high quality amorphous hydrogenated semiconductor films was explored with different in situ spectroscopic methods. Nucleation of ArF laser-induced CVD of a-Ge:H on different substrates was investigated by real time ellipsometry, whereas the F2 laser (157nm) deposition of a-Si:H was monitored by FTIR transmission spectroscopy. The ellipsometric studies reveal a significant influence of the substrate surface on the nucleation stage, which in fact determines the electronic and mechanical properties of the bulk material. Coalescence of initial clusters occurs at a thickness of 16 Å for atomically smooth hydrogen-terminated c-Si substrates, whereas on native oxide covered c-Si substrates the bulk volume void fractions are not reached until 35 Å film thickness. For the first time we present a series of IR transmission spectra with monolayer resolution of the initial growth of a-Si:H. Hereby the film thickness was measured simultaneously using a quartz crystal microbalance with corresponding sensitivity. The results give evidence for cluster formation with a coalescence radius of about 20 Å. Difference spectra calculated for layers at different depths with definite thickness reveal that the hydrogen-rich interface layer stays at the substrate surface and does not move with the surface of the growing film. The decrease of the Urbach energy switching from native oxide to H-terminated substrates suggests a strong influence of the interface morphology on the bulk material quality.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Eres, D., Lowndes, D. H., Tischler, J. Z., Sharp, J. W., Geohegan, D. B. and Pennycook, S. J., Mater. Res. Soc. Symp. Proc. 60 517 (1989)Google Scholar
2 Azzam, R. M. A, and Bashara, M., Ellipsometry and polarized light (North Holland, Amsterdam 1977)Google Scholar
3 Collins, R. W., An, I., Nguyen, H. V., and Gu, T., Thin Solid Films 200 374 (1991)Google Scholar
4 Cannillas, A., Bertran, E., Andujar, J. L., and Drevillon, B., J. Appl. Phys. 68 (6) 2752 (1990)Google Scholar
5 Malitsu, I. H., J. Opt. Soc. Am. 55 1265 (1965)Google Scholar
6 Aspnes, D. E., Theeten, J. B., and Hottier, F., Phys.Rev. B 20 3292 (1979)Google Scholar
7 Cong, Y., An, I., Vedam, K., and Collins, R. W., Appl.Opt. 30 2692 (1991)Google Scholar
8 Kuschnereit, R., Fath, H., Kolomenskii, A., Szabadi, M., and Hess, P., Appl. Phys. A 61 269 (1995)Google Scholar
9 Kolomenskii, A., Szabadi, M., and Hess, P., Appl.Surf. Sci. 86 591 (1995)Google Scholar
10 Higashi, G. S., Chabal, Y. J., Trucks, G. W. and Raghavachari, K., Appl. Phys. Lett. 56 656 (1990)Google Scholar
11 Lautenschlager, P., Garriga, M., Viña, L. and Cardona, M., Phys. Rev. B 9 4821 (1987)Google Scholar
12 Drevillon, B. and Benferhat, R., J. Appl. Phys. 63 (10) 5088 (1988)Google Scholar
13 An, I., Nguyen, H. V. and Collins, R. W., Phys. Rev.Lett. 65 (18) 2274 (1990)Google Scholar
14 Blayo, N. and Drevillon, B., Appl. Phys. Lett. 59 (8) 950 (1991)Google Scholar
15 An, I., Li, Y. M., Nguyen, H. V. and Collins, R. W., Rev. Sci. Instrum. 63 (8) 3842 (1992)Google Scholar
16 Li, Y. M., An, I., Nguyen, H. V., Wronski, C. R. and Collins, R. W., Phys. Rev. Lett. 68 (18) 2814 (1992)Google Scholar
17 Nguyen, H. V. Lu, Y., Kim, S., Wakagi, M. and Collins, R. W., Phys. Rev. Lett. 74 (19) 3880 (1995)Google Scholar
18 Itoh, U., Toyoshima, Y., Onuki, H., Washida, N. and Ibuki, T., J. Chem. Phys. 85 4867 (1986)Google Scholar
19 Toyoshima, Y., Arai, K., Matsuda, A. and Tanaka, K., Appl. Phys. Lett. 57 (10) 1028 (1990)Google Scholar
20 Toyoshima, Y., Arai, K., Matsuda, A., Tanaka, K., J. Non-Cryst. Sol. 137/138 765 (1991)Google Scholar
21 Morrison, P. W. and Haigis, J. R., J. Vac. Sci. Technol. A 11 (3) 490 (1993)Google Scholar
22 Toyoshima, Y., Marsuda, A., and Arai, K., J. Non-Cryst. Solids 164166 (103) (1993)Google Scholar
23 Toyoshima, Y., Proc. Int. Conf. Spectroscopic Ellipsometry (ICSE'93, Paris), MeP16 (1993)Google Scholar
24 Katiyar, M., Feng, G. F., Abelson, J. R. and Maley, N., Mater. Res. Soc. Symp. Proc, 219 (1991)Google Scholar
25 Katiyar, M., Feng, G.F., Yang, Y.H., Abelson, J.R. and Maley, N., Appl. Phys. Lett. 63 (4) 461 (1993)Google Scholar
26 Katiyar, M., Yanh, Y.H. and Abelson, J.R., J. Appl. Phys. 77 (12) 6247 (1995)Google Scholar
27 Swanepoel, R., J. Phys. Sci. Instrum. 16, 1214 (1983)Google Scholar
28 Knobloch, J. and Hess, P., “Quartz crystal microbalance for in situ detection of CVD growth processes with monolayer resolution”, to be publishedGoogle Scholar
29 Karstens, H., Knobloch, J., Winkler, A., Pusel, A., Barth, M. and Hess, P., Appl. Surf. Sci. 86 521 (1994)Google Scholar
30 Sauerbrey, G., Zeitschrift für Physik 155 206 (1959)Google Scholar
31 Hesch, K., Karstens, H. and Hess, P., Thin Solid Films, 218 29 (1992)Google Scholar
32 Jackson, R.L. and Tyndall, G.W., J. Appl. Phys. 62 (1) 315 (1987)Google Scholar