Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-17T19:03:42.507Z Has data issue: false hasContentIssue false

In Situ Cross-Sectional Scanning Tunneling Microscopy Sample Preparation Technique

Published online by Cambridge University Press:  21 February 2011

Y.-C. Kim
Affiliation:
Department of Materials Science and Engineering and Materials Research Center, R. R. McCormick School of Engineering and Applied Science, Northwestern University, 2225 N. Campus Drive, Evanston, IL 60208-3108
M. J. Nowakowski
Affiliation:
Department of Materials Science and Engineering and Materials Research Center, R. R. McCormick School of Engineering and Applied Science, Northwestern University, 2225 N. Campus Drive, Evanston, IL 60208-3108
D. N. Seidman
Affiliation:
Department of Materials Science and Engineering and Materials Research Center, R. R. McCormick School of Engineering and Applied Science, Northwestern University, 2225 N. Campus Drive, Evanston, IL 60208-3108
Get access

Abstract

A novel in situ sample cleavage technique has been developed for fabricating specimens for cross-sectional scanning tunneling microscopy (XSTM) applications. This technique can be easily adapted to any ultrahigh vacuum (UHV) STM that has a coarse motion capability. A conducting diamond STM tip is used to create micron long scratches on Ge/GaAs or GaAs {001 }-type surfaces. These {001} surfaces are imaged with STM to observe scratch characteristics, and GaAs samples are cleaved to reveal {110}-type faces. Atomic resolution images of {110}-type GaAs surfaces are readily and reproducibly obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Albreksten, O. and Salemink, H. W. M., J. Vac. Sci. Technol. B 9, 779 (1991).Google Scholar
2 Salemink, H. W. M., Albrektsen, O., and Koenraad, P., Phys. Rev. B 45, 6946 (1992).Google Scholar
3 Salemink, H. W. M. and Albrektsen, O., J. Vac. Sci. Technol. B 10, 1799 (1992).Google Scholar
4 Johnson, M. B., Maier, U., Meier, H. -P., and Salemink, H. W. M., Appl. Phys. Lett. 63, 1273 (1993).Google Scholar
5 Salemink, H. W. M. and Albrektsen, O., Phys. Rev. B 47, 16 044 (1993).Google Scholar
6 Gwo, S., Chao, K.-J., Shih, C. K., Sadra, K., and Streetman, B. G., Phys. Rev. Lett. 71, 1883 (1993).Google Scholar
7 Gwo, S., Chao, K.-J., and Shih, C. K., Appl. Phys. Lett. 64 493 (1994).Google Scholar
8 Feenstra, R. M., Collins, D. A., Ting, D. Z. -Y., Wang, M. W., and McGill, T. C., Phys. Rev. Lett. 72, 2749 (1994).Google Scholar
9 Lew, A. Y., Yu, E. T., Chow, D. H., and Miles, R. H., Appl. Phys. Lett. 65, 201 (1994).Google Scholar
10 Zheng, J. F., Walker, J. F., Salmeron, M. B., and Weber, E. R., Phys. Rev. Lett. 72, 2414 (1994).Google Scholar
11 Feenstra, R. M., Semicond. Sci. Technol. 9, 2157 (1994).Google Scholar
12 Smith, A. R., Chao, Kuo-Jen, Shih, C. K., Shih, Y. C., and Streetman, B. G., Appl. Phys. Lett. 66, 478 (1995).Google Scholar