Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T07:46:28.695Z Has data issue: false hasContentIssue false

In sito Ion Beam Analysis of Radiation Damage Kinetics in MgTiO3 Single Crystals at 170-470 K

Published online by Cambridge University Press:  21 February 2011

Ning Yu
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Jeremy N. Mitchell
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Kurt E. Sickafus
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Michael Nastasi
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Get access

Abstract

Radiation damage kinetics in synthetic MgTiO3 (geikielite) single crystals have been studied using the in situ ion beam facility at Los Alamos National Laboratory. The geikielite samples were irradiated at temperatures of 170, 300, and 470 K with 400 keV xenon ions and the radiation damage was sequentially measured with Rutherford backscattering using a 2 MeV He ion beam along a channeling direction. Threshold doses of 1 and 5×1015 Xe/cm2 were determined for the crystalline-to-amorphous transformation induced by Xe ion irradiation at 170 and 300 K, respectively. However, geikielite retained its crystallinity up to a dose of 2.5x1016 Xe/cm2 at the irradiation temperature of 470 K. This study has shown that MgTiO3, which has a corundum derivative structure, is another radiation resistant material that has the potential for use in radiation environments.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hobbs, L.W., Clinard, F.W. Jr., Zinkle, S.J., and Ewing, R.C., J. Nucl. Mater. 216, 291 (1994).Google Scholar
2 Zinkle, S.J., Nucl. Instrum. Meth. B91, 234 (1994).Google Scholar
3 Kinoshita, C., J. Nucl. Mater. 191194, 67 (1992).Google Scholar
4 Yu, N., Sickafus, K.E., and Nastasi, M., Philos. Mag. Lett. 70, 235 (1994); N. Yu, M. Nastasi, M.G. Hollander, C.R. Evans, C.J. Maggiore, K.E. Sickafus, and JR. Tesmer, Mater. Res. Soc. Symp. Proc. 316, 69(1994).Google Scholar
5 Bordes, N., Wang, L.M., Ewing, R.C., and Sickafus, K.E., J. Mater. Res. 10, 981 (1995).Google Scholar
6 Yu, N., Sickafus, K.E., and Nastasi, M., Mater. Res. Soc. Symp. Proc. 373, 401 (1995).Google Scholar
7 Sickafus, K.E., Larson, A.C., Yu, N., Nastasi, M., Hollenberg, G.W., Garner, FA., and Bradt, R.C., J. of Nucl. Mater. 219, 128 (1995).Google Scholar
8 Moncoffre, N., Nucl. Instru. Meth. B59/60, 1129 (1991).Google Scholar
9 McHargue, C.J., Farlow, G.C., White, C.W., Williams, J.M., Appleton, B.R., and Naramoto, H., Mater. Sci. Engin. 69, 123 (1985).Google Scholar
10 Bull, S.J. and Page, T.F., J. Mater. Sci. 26, 3086 (1991).Google Scholar
11 Yu, N., Nastasi, M., Levine, T.E., Tesmer, J.R., Hollander, M.G., Evans, C.R., and Maggiore, C.J., Nucl. Instru. Meth. B99, 566 (1995).Google Scholar
12 Ziegler, J.F., Biersack, J.P., and Littmark, U., The Stopping and Range of Ions in Solids, (Pergamon, New York, 1985).Google Scholar
13 Mitchell, J.N., Yu, N., Sickafus, K.E., Nastasi, M., Taylor, T.N., McClellan, K.J., and Nord, G.L., Res. Soc. Symp. Proc. 396, (1996), in the same volume as this article. Google Scholar