Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T02:10:25.330Z Has data issue: false hasContentIssue false

In pursuit of “super”high-k ternary oxides: aqueous CSD and material properties

Published online by Cambridge University Press:  01 February 2011

An Hardy
Affiliation:
[email protected], Hasselt University, Chemistry, Agoralaan, building D, Diepenbeek, 3590, Belgium
Sven Van Elshocht
Affiliation:
[email protected], IMEC vzw, Heverlee, Leuven, 3001, Belgium
Jan D'Haen
Affiliation:
[email protected], Institute for Materials Research, Materials Physics group, Diepenbeek, 3590, Belgium
Stefan De Gendt
Affiliation:
[email protected], IMEC vzw, Heverlee, Leuven, 3001, Belgium
Marlies K. Van Bael
Affiliation:
[email protected], Hasselt University, Institute for Materials Research, Inorganic and Physical Chemistry group, Diepenbeek, 3590, Belgium
Marc Heyns
Affiliation:
[email protected], IMEC vzw, Heverlee, Leuven, 3001, Belgium
Marc D'Olieslaeger
Affiliation:
[email protected], IMEC, division IMOMEC, Diepenbeek, 3590, Belgium
Jules Mullens
Affiliation:
[email protected], Hasselt University, Institute for Materials Research, Inorganic and Physical Chemistry group, Diepenbeek, 3590, Belgium
Get access

Abstract

Important material properties of dielectric oxide films fabricated by aqueous chemical solution deposition, such as crystallization, topography, contamination and interfacial layer were evaluated and related to the films' dielectric properties.

Functional ultrathin films (<20 nm thickness) of zirconia, barium zirconate and strontium niobate were deposited. The films were all subjected to the same thermal treatment, based on the high similarity of their precursors' thermal decomposition behavior. The evolution of the films' chemical purity as a function of temperature and the effect of annealing on the interfacial SiO2 layer was studied by grazing angle ATR-FTIR. The films' crystallization behavior was dependent on film thickness and composition as shown by high temperature XRD. C-V characterization of the films demonstrated a k-value in the same order of magnitude as for the ZrO2 reference material. This is lower than the bulk material's value, thus leaving room for further optimization of the current materials or alternatively selection of other material compositions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hardy, A. Bael, M.K. Van, D'Haen, J., Douhéret, O., D'Olieslaeger, M., Mullens, J. Elshocht, S. Van, Gendt, S. De, Adelmann, C. Caymax, M. Conard, T. Witters, T. Bender, H. Richard, O. and Heyns, M. J. Mater. Res. 22, 3484 (2007).Google Scholar
2. Elshocht, S. Van, Hardy, A. Witters, T. Adelmann, C. Caymax, M. Conard, T. Gendt, S. De, Franquet, A. Heyns, M. Bael, M.K. Van and Mullens, J. Electrochem. Solid State Lett. 10, G15 (2007).Google Scholar
3. Elshocht, S. Van, Hardy, A. Adelmann, C. Caymax, M. Conard, T. Franquet, A. Richard, O. Bael, M.K. Van, Mullens, J. and Gendt, S. De, J. Electrochem. Soc. 155 (4), in press (2008).Google Scholar
4. Schwartz, R.W. Schneller, T. and Waser, R. C. R. Chim. 7, 433 (2004).Google Scholar
5. Rul, H. Van den, Bael, M.K. Van, Hardy, A. Werde, K. Van and Mullens, J. In Handbook of Nanoceramics and Their Based Nanodevices; H. S., Nalwa, T. Y., Tseng Eds., (in press, 2008).Google Scholar
6. Werde, K. Van, Vanhoyland, G. Nelis, D. Mondelaers, D. Bael, M.K. Van, Mullens, J. and Poucke, L.C. Van, J. Mater. Chem. 11, 1192 (2001).Google Scholar
7. Nelis, D. Werde, K. Van, Mondelaers, D. Vanhoyland, G. Rul, H. Van den, Bael, M.K. Van, Mullens, J. and Poucke, L.C. Van, J. Sol-Gel Sci. Technol. 26, 1125 (2003).Google Scholar
8. Werde, K. Van, Vanhoyland, G. Mondelaers, D. Rul, H. Van den, Bael, M. Van, Mullens, J. and Poucke, L. Van, J. Mater. Sci. 42, 624 (2007).Google Scholar
9. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, 5th edition ed.; John Wiley & Sons, Inc.: New York, (1997).Google Scholar
10. Zhao, C. Roebben, G. Heyns, M. and Biest, O. van der, Euro Ceramics Vii, Pt 1-3 Key Eng. Mater. 206-2, 1285 (2002).Google Scholar
11. Robertson, J. Rep. Prog. Phys. 69, 327 (2006).Google Scholar
12. Delugas, P. Fiorentini, V. Filippetti, A. and Pourtois, G. Phys. Rev. B 76, 104112 (2007).Google Scholar
13. Stetson, H. and Schwartz, B. J. Am. Ceram. Soc. 44, 420 (1961).Google Scholar
14. Levin, I. Chan, J.Y. Scott, J.H. Farber, L. Vanderah, T.A. and Maslar, J.E. J. Solid State Chem. 166, 24 (2002).Google Scholar
15. Stengel, M. and Spaldin, N.A. Nature 443, 679 (2006).Google Scholar