Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-17T20:17:00.614Z Has data issue: false hasContentIssue false

Improving Thermal Performance of High Internal Phase Emulsion Polymerized Foams with Maleimide Based Monomers

Published online by Cambridge University Press:  15 February 2011

Mark A. Hoisington
Affiliation:
Los Alamos National Laboratory, Materials Science and Technology Division, Polymers and Coatings Group, Los Alamos, NM 87545
Joseph R. Duke
Affiliation:
Los Alamos National Laboratory, Materials Science and Technology Division, Polymers and Coatings Group, Los Alamos, NM 87545
David A. Langlois
Affiliation:
Los Alamos National Laboratory, Materials Science and Technology Division, Polymers and Coatings Group, Los Alamos, NM 87545
Get access

Abstract

The influence of three N-substituted maleimides on the thermal performance of high internal phase emulsion (HIPE) polymerized foams were investigated. N-propylmaleimide, Nbutylmaleimide, and N-cyclohexylmaleimide were copolymerized with styrene and crosslinked with either divinylbenzene or Bis(3-ethyl-5-methyl-4-maleimide-phenyl)methane in a HIPE polymerization process. All maleimide modifiers produced increases in the foam glass transition temperature (Tg) as a function of the maleimide concentration. The degree of Tg improvement was strongly dependent on the N-substituted maleimide used during processing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Barby, D., Haq, A., European Patent 0,060,138 (1982)Google Scholar
2. Haq, Z., US Patent 4,536,521 (1985)Google Scholar
3. Barby, D., Haq, Z., US Patent 4,522,953 (1985)Google Scholar
4. Williams, J. M., Nyitray, A. M., Wilkerson, M. H., US Patent 4,966,919 (1990)Google Scholar
5. Sherrington, D. C., Small, P. W., US Patent 4,965,289 (1990)Google Scholar
6. Hough, D. B., Hammond, K., Morris, C., Hammond, R. C., US Patent 5,071,747 (1991)Google Scholar
7. Elmes, A. R., Hammond, K., Sherrington, D. C., US Patent 5,021,462 (1991)Google Scholar
8. DesMarais, T. A., Dick, S. T., Shiveley, T. M., US Patent 5,149,720 (1992)Google Scholar
9. DesMarais, T. A., Stone, K. J., Thompson, H. A., Young, G. A., Von, G. D. La, Dyer, J. C., US Patent 5,260,345 (1993)Google Scholar
10. Williams, J. M., Langmuir, 4, 44 (1988)Google Scholar
11. Williams, J. M., Wrobleski, D. A., Langmuir, 4, 656 (1988)Google Scholar
12. Williams, J. M., Wrobleski, D. A., Journal of Materials Science Letters, 24, 4062 (1989)Google Scholar
13. Nyitray, A. M., Williams, J. M., Journal of Cellular Plastics, 25, 217 (1989)Google Scholar
14. Williams, J. M., Gray, A. J., Wilkerson, M. H., Langmuir, 6, 437 (1990)Google Scholar
15. Williams, J. M., Wilkerson, M. H., Polymer, 31, 2162 (1990)Google Scholar
16. Williams, J. M., Langmuir, 7, 1370 (1991)Google Scholar
17. Hoisington, M. A., Duke, J. R., Apen, P. G., Polymer (submitted December 1995)Google Scholar
18. Hoisington, M. A., Duke, J. R., Apen, P. G., Proceedings American Chemical Society PMSE Division, 74 (1996)Google Scholar
19. Coleman, L. E. Jr., Conrady, J. A., Journal Polymer Science 38, 241 (1959)Google Scholar
20. Paesschen, G. V., Timmerman, D., Makromolekulare Chemie, 78, 112 (1964)Google Scholar
21. Cubbon, R. C. P., Polymer, 6, 419 (1965)Google Scholar
22. Mehta, N. B., Phillips, A. P., Fu, F., Lui, , Brooks, R. E. Journal of Organic Chemistry 1960, 25, 1012Google Scholar