Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T02:40:54.366Z Has data issue: false hasContentIssue false

Improving Stability of Pentacene Field-Effect Transistors with Post-Annealing

Published online by Cambridge University Press:  01 February 2011

Shun-Wei Liu
Affiliation:
[email protected], Academia Sinica, Institute of Chemistry, No. 128, Academia Rd., Taipei 11542, Taiwan, Taipei, N/A, Taiwan, +886-02-27898538, +886-02-27831237
Jia-Cing Huang
Affiliation:
[email protected], National Taiwan University of Science and Technology, Department of Electronic Engineering, Taipei, 106, Taiwan
Chih-Chien Lee
Affiliation:
[email protected], National Taiwan University of Science and Technology, Department of Electronic Engineering, Taipei, 106, Taiwan
Chin-Ti Lee
Affiliation:
[email protected], Academia Sinica, Institute of Chemistry, No. 128, Academia Rd., Taipei 11542, Taiwan, Taipei, N/A, Taiwan
Juen-Kai Wang
Affiliation:
[email protected], National Taiwan University, Center for Condensed Matter Sciences, Taipei, 106, Taiwan
Get access

Abstract

In this report, we demonstrate that the performance and stability of pentacene top-contact field-effect transistor can be greatly improved with post-annealing treatment. After post-annealing at 90°C for 12 hours in nitrogen environment, the hole field-effect mobility of 0.3 cm2/Vs and the on/off current ratio of 107 were achieved, demonstrating 100% improvement in performance after the post-annealing treatment. The decay rate of drain current at constant gate and drain-source voltage was found to be decreased by more than 40%. The improved performance is attributed to the elimination of trapped holes and lattice defects in the organic semiconductor layer due to the post-annealing process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Brown, A. R., Pomp, A., Hart, C. M, and Leeuw, D. M de, Science 270, 972 (1995).Google Scholar
2. Drury, C. J, Mutsaers, C. M. J., Hart, C. M, Matter, M., Leeuw, D. M. de, Appl. Phys. Lett. 73, 108 (1998).Google Scholar
3. Huitema, H. E. A., Gelinck, G. H, Putten, J. B. P. H. van der, Kuijk, K. E, Hart, C. M, Cantatore, E., Herwig, P. T, Breemen, A. J. J. M. van, Leeuw, D. M. de, Nature 414, 599 (2001).Google Scholar
4. Crone, B., Dodabalapur, A., Gelperin, A., Torsi, L., Katz, H. E, Lovinger, A. J, Bao, Z., Appl. Phys. Lett. 78, 2229 (2001).10.1063/1.1360785Google Scholar
5. Sekitani, T., Iba, S., Kato, Y., Noguchi, Y., and Someya, T., Sakurai, T., Appl. Phys. Lett. 87, 073505 (2005).Google Scholar
6. Gomes, H. L, Sallinga, P., Dinelli, F., urgia, M. M., Biscarini, F., Leeuw, D. M. de, Muck, T., Geurts, J., Molenkamp, L. W, Wagner, V., and Molenkamp, L. W, Appl. Phys. Lett. 84, 3184 (2004).Google Scholar
7. Powell, M. J, Berkel, C. van, and Hughes, J. R, Appl. Phys. Lett. 54, 1323 (1989).10.1063/1.100704Google Scholar
8. Gleskova, H. and Wagner, S., IEEE Trans. Electron Devices 48, 1667 (2001).10.1109/16.936588Google Scholar
9. Halik, M., Klauk, H., Zschieschang, U., Schmid, G., Radlik, W., and Weber, W., Adv. Mater. 14, 1717 (2002).10.1002/1521-4095(20021203)14:23<1717::AID-ADMA1717>3.0.CO;2-G3.0.CO;2-G>Google Scholar