Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T15:18:59.409Z Has data issue: false hasContentIssue false

Improvement of the Pt/Graphene Interface Adhesion by Metallic Adatoms for Fuel Cell Applications

Published online by Cambridge University Press:  31 January 2011

Fatih Gurcag Sen
Affiliation:
[email protected], University of Windsor, Materials Engineering, Windsor, Canada
Yue Qi
Affiliation:
[email protected], General Motors R&D Center, Materials and Processes Laboratory, Warren, Michigan, United States
Ahmet T Alpas
Affiliation:
[email protected], University of Windsor, Materials Engineering, Windsor, Canada
Get access

Abstract

The degradation of carbon supported Pt catalyst used in polymer electrolyte membrane fuel cells is a significant durability problem affected by the agglomeration and detachment of Pt particles from carbon support. The bond between Pt and carbon must be significantly strengthened in order to prevent performance loss. In this work, first principles calculations were carried out in an attempt to understand the role that metallic adatoms play in the enhancement of the Pt/carbon interface adhesion. Metallic adatoms including all first row transition metals as well as Li, Al, Zr, Nb, and Au were inserted into a Pt(111)/graphene interface. The work of separation required to break the interface between Pt-adatom or carbon-adatom bond was then calculated for each configuration, revealing that the carbon-adatom bond was weaker than the Pt-adatom bond, making it easier to break the interface from the carbon-adatom bond side. While Sc, Ti, Zr, and Nb displayed strong binding to both Pt and graphene surfaces, at the Pt/graphene interface, the bond with graphene was weakened. The strength of the Pt-adatom bond was proportional to the amount of charge transferred from the adatom to the graphene. Co, Ni and V were the most promising metals for strengthening the Pt/graphene interface. These metals donated charges that were distributed evenly between carbon and Pt and formed strong covalent bonds with carbon and moderate bonding to Pt.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hooger, G., Fuel Cell Technology Handbook (CRC Press, Boca Raton, 2003).Google Scholar
2 Mayrhofer, K. J. J., Meier, J. C., Ashton, S. J., Wiberg, G. K. H., Kraus, F., Hanzlik, M., and Arenz, M., Electrochem. Commun. 10, 1144 (2008).Google Scholar
3 Ferreira, P. J., O', G. J. La, Shao-Horn, Y., Morgan, D., Makharia, R., Kocha, S., and Gasteiger, H. A., J. Electrochem. Soc. 152 (2005).Google Scholar
4 Borup, R., Meyers, J., Pivovar, B., et al, Chem. Rev. 107, 3904 (2007).Google Scholar
5 Shao, Y., Yin, G., and Gao, Y., J. Power Sources 171, 558 (2007).Google Scholar
6 Yu, X. and Ye, S., J. Power Sources 172, 145 (2007).Google Scholar
7 Roy, S. C., Harding, A. W., Russell, A. E., and Thomas, K. M., J. Electrochem. Soc. 144, 2323 (1997).Google Scholar
8 Acharya, C. K. and Turner, C. H., Surf. Sci. 602, 3595 (2008).Google Scholar
9 Acharya, C. K., Li, W., Liu, Z., Kwon, G., Turner, C. Heath, Lane, A. M., Nikles, D., Klein, T., and Weaver, M., J. Power Sources 192, 324 (2009).Google Scholar
10 Mukerjee, S. and Srinivasan, S., J. Electroanal. Chem. 357, 201 (1993).Google Scholar
11 Wei, Z., Guo, H., and Tang, Z., J. Power Sources 62, 233 (1996).Google Scholar
12 Yu, P., Pemberton, M., and Plasse, P., J. Power Sources 144, 11 (2005).Google Scholar
13 Colón-Mercado, H. R., Kim, H., and Popov, B. N., Electrochem. Commun. 6, 795 (2004).Google Scholar
14 Chou, J.-. and Sasaki, K., Solid State Ionics 179, 1405 (2008).Google Scholar
15 Okamoto, Y., Chem. Phys. Lett. 407, 354 (2005).Google Scholar
16 Giovannetti, G., Khomyakov, P. A., Brocks, G., Karpan, V. M., Brink, J. Van Den, and Kelly, P. J., Phys. Rev. Lett. 101 (2008).Google Scholar
17 Wang, L.-., Khare, S. V., Chirita, V., Johnson, D. D., Rockett, A. A., Frenkel, A. I., Mack, N. H., and Nuzzo, R. G., J. Am. Chem. Soc. 128, 131 (2006).Google Scholar
18 Chan, K. T., Neaton, J. B., and Cohen, M. L., Phys. Rev. B 77 (2008).Google Scholar
19 Sevinçli, H., Topsakal, M., Durgun, E., and Ciraci, S., Phys. Rev. B 77 (2008).Google Scholar
20 Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., and Fiolhais, C., Phys. Rev. B 46, 6671 (1992).Google Scholar
21 Kresse, G. and Hafner, J., Phys. Rev. B 49, 14251 (1994).Google Scholar
22 Kresse, G. and Furthmüller, J., Comput. Mater. Sci. 6, 15 (1996).Google Scholar
23 Blöchl, P. E., Phys. Rev. B 50, 17953 (1994).Google Scholar
24 Kresse, G. and Joubert, D., Phys. Rev. B 59, 1758 (1999).Google Scholar
25 Boer, F. R. De, Boom, R., Mattens, W. C. M., Miedema, A. R., and Niessen, A. K., Cohesion in Metals Transition Metal Alloys (North-Holland, Amsterdam, 1988).Google Scholar
26 Bader, R. F. W., Acc. Chem. Res. 18, 9 (1985).Google Scholar
27 Henkelman, G., Arnaldsson, A., and Jónsson, H., Comput. Mater. Sci. 36, 354 (2006).Google Scholar