Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T15:28:32.570Z Has data issue: false hasContentIssue false

Improvement of InGaP/GaAs Heterointerface Quality by Controlling AsH3 Flow Conditions

Published online by Cambridge University Press:  03 September 2012

Yoshino K. Fukai
Affiliation:
NTT System Electronics Laboratories, 3-1 Morinosato Wakamiya Atsugi-shi, Kanagawa, 243-01 JAPAN, [email protected].
Fumiaki Hyuga
Affiliation:
NTT System Electronics Laboratories, 3-1 Morinosato Wakamiya Atsugi-shi, Kanagawa, 243-01 JAPAN, [email protected].
Takumi Nittono
Affiliation:
NTT System Electronics Laboratories, 3-1 Morinosato Wakamiya Atsugi-shi, Kanagawa, 243-01 JAPAN, [email protected].
Kazuo Watanabe
Affiliation:
NTT System Electronics Laboratories, 3-1 Morinosato Wakamiya Atsugi-shi, Kanagawa, 243-01 JAPAN, [email protected].
Hirohiko Sugahara
Affiliation:
NTT System Electronics Laboratories, 3-1 Morinosato Wakamiya Atsugi-shi, Kanagawa, 243-01 JAPAN, [email protected].
Get access

Abstract

This paper examines the conduction band offset, ∆Ec, and interface charge density, σ, of disordered InGaP and GaAs heterointerfaces by controlling the AsH 3 cover time and flow rate at the growth interval from GaAs to InGaP. Short AsH, cover time (0.05 min) creates high ΔEc of 0.2 eV and low σ of 6.3×l0 10cm −2. Extending the AsH 3 cover time by 50 times cuts ΔEc to almost 0 eV and increases σ by one order. Interface morphology for long-AsH3 -cover-time samples observed by atomic force microscopy shows a terrace structure on GaAs surface, which means the surface is As rich. These results suggest that an As-poor GaAs surface is essential to achieving high-quality InGaP/GaAs heterointerfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Chen, J., Sites, J. R., Spaun, I. L., Hafich, M. J., and Robinson, G. Y., Appl. Phys. Lett. 58, 744 (1991).Google Scholar
2 Kitahara, K., Hoshino, M. and Ozeki, M., Jpn. J. Appl. Phys. 27, LI 10 (1988).Google Scholar
3 Nakasha, N., Miyata, T., Watanabe, Y., Ochimizu, H., Kuroda, S. and Takikawa, M., IEEE 1994 CICC Dig. p 391 (1994).Google Scholar
4 Takahashi, T., Sasa, S., Kawano, A., Iwai, T. and Fujii, T., IEEE IEDM94 Dig. 191 (1994).Google Scholar
5 Sugitani, S., Yamane, Y., Nittono, T., Yamazaki, H. and Yamasaki, K., 1994 GaAs IC Symp. Dig., pp. 123126.Google Scholar
6 Schneider, R. P. Jr., Jones, E. D., and Follstaedt, D. M., Appl. Phys. Lett. 65, 587 (1994).Google Scholar
7 Kroemer, H. et al. , Appl. Phys. Lett. 36, 295 (1980).Google Scholar
8 Guimarass, F. E. G., et al. , J. Cryst. Growth 124, 199 (1992).Google Scholar
9 Ernst, P., Geng, C., F.Scholz, Schweizer, H., Zhang, Y. and Mascarenhas, A., Appl. Phys. Lett. 67, 2347 (1995).Google Scholar
10 Froyen, S., Zunger, A. and Mascarrenhas, A., Appl. Phys. Lett. 68, 2852 (1996).Google Scholar
11 Ozasa, K., Yuri, M., Tanaka, S. and Matsunami, H., J.Appl. Phys. 68, 107 (1990).Google Scholar