Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T23:34:32.984Z Has data issue: false hasContentIssue false

Improvement of Gaas Crystal Quality on Si Grown by Mocvd Through Two-Dimensional-Like Nucleation with Low Temperature in Situ Hydrogen/Arsine Plasma Cleaning

Published online by Cambridge University Press:  25 February 2011

Euijoon Yoon
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Rafael Reif
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

We report the significant improvement of GaAs crystal quality on Si grown by metal-organic chemical vapor deposition (MOCVD) with an in situ low temperature hydrogen/arsine plasma cleaning of the Si substrate at 450°C and a consequent controlled two-dimensional-like morphology of the low temperature buffer layer at its early stage. The most critical step that determines the interfacial cleanliness and the early stages of the nucleation and thin film formation of heteroepitaxial GaAs on Si in a non-ultrahigh vacuum MOCVD system is the substitution of hydrogen atoms passivating the Si surface after ex situ HF-dip with pas-sivating As atoms. Reduction of in situ cleaning temperature ensures the very slow kinetics of thermal desorption of the hydrogen atoms and re-oxidation of exposed Si surface from the reactor environment, and provides a fully As-passivated Si surface, leading to a 2D-like buffer layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Fischer, R., Masselink, W.T., Klem, J., Henderson, T., McGlinn, T.C., Klein, M.V. and Morkoc, H., Mazur, J.H. and Washburn, J., J. Appl. Phys. 58, 374 (1985)Google Scholar
[2] Akiyama, M., Kawarada, Y. and Kaminishi, K., Jpn. J. Appl. Phys. 23, L843 (1984)Google Scholar
[3] Hull, R., Fischer-Colbrie, A., Rosner, S.J., Koch, S.M. and Harris, J.S. Jr., Appl. Phys. Lett. 51, 1723 (1987)Google Scholar
[4] Palmer, J.E., Burns, G., Fonstad, C.G. and Thompson, C.V., Appl. Phys. Lett. 55, 990 (1989)Google Scholar
[5] Lee, H.P., Liu, X., Wang, S., George, T. and Weber, E.R., Appl. Phys. Lett. 54, 2695 (1989)Google Scholar
[6] Castagné, J., Fontaine, C., Bedel, E. and Munoz-Yague, A., J. Appl. Phys. 64, 2372 (1988)Google Scholar
[7] Kitahara, K., Ohtsuka, N., and Ozeki, M., J. Vac. Sci. Technol. B7, 700 (1989)Google Scholar
[8] Yoon, E. and Reif, R., Appl. Phys. Lett. to be published Google Scholar
[9] Yoon, E., Parris, P. and Reif, R., J. Electron. Mater. 19, 337 (1990)Google Scholar
[10] Hirsch, P.B., in Progress in Metal Physics, edited by Chalmers, B. and King, R., Pergamon, 1956, pp.272287 Google Scholar
[11] Rosner, S.J., Koch, S.M. and Harris, J.S. Jr., Appl. Phys. Lett. 49, 1764 (1987)Google Scholar
[12] Grunthaner, F.J. and Grunthaner, P.J., Mat. Sci. Rep. 1, 65 (1986)Google Scholar
[13] Takahagi, T., Nagai, I., Ishitani, A., Kuroda, H. and Nagasawa, Y., J. Appl. Phys. 64, 3516 (1988)Google Scholar
[14] Meyerson, B.S., Ganin, E., Smith, D.A. and Nguyen, T.N., J. Electrochem. Soc. 133, 1232 (1986)Google Scholar
[15] Hirayama, H. and Tatsumi, T., Appl. Phys. Lett. 54, 1561 (1989)Google Scholar
[16] Yoon, E. and Reif, R., unpublished resultGoogle Scholar
[17] Rand, M.J., J. Vac. Sci. Technol. 16, 420 (1979)Google Scholar