Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T01:33:32.637Z Has data issue: false hasContentIssue false

Improvement of CdMnTe Detector Performance by MnTe Purification

Published online by Cambridge University Press:  11 August 2011

K. H. Kim
Affiliation:
Brookhaven National Laboratory, Upton, NY 11973, USA
A. E. Bolotnikov
Affiliation:
Brookhaven National Laboratory, Upton, NY 11973, USA
G. S. Camarda
Affiliation:
Brookhaven National Laboratory, Upton, NY 11973, USA
R. Tappero
Affiliation:
Brookhaven National Laboratory, Upton, NY 11973, USA
A. Hossain
Affiliation:
Brookhaven National Laboratory, Upton, NY 11973, USA
Y. Cui
Affiliation:
Brookhaven National Laboratory, Upton, NY 11973, USA
G. Yang
Affiliation:
Brookhaven National Laboratory, Upton, NY 11973, USA
R. Gul
Affiliation:
Brookhaven National Laboratory, Upton, NY 11973, USA
R. B. James
Affiliation:
Brookhaven National Laboratory, Upton, NY 11973, USA
Get access

Abstract

Residual impurities in manganese (Mn) are a big obstacle to obtaining high- performance CdMnTe (CMT) X-ray and gamma-ray detectors. Generally, the zone-refining method is an effective way to improve the material’s purity. In this work, we purified the MnTe compounds combining the zone-refining method with molten Te that has a very high solubility. We confirmed the improved purity of the material by glow-discharge mass spectrometry (GDMS). We also found that CMT crystals from a multiple refined MnTe source, grown by the vertical Bridgman method, yielded better performing detectors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Burger, A., Chattopadhyay, K., Chen, H., Ndap, J. O., Ma, X., Trivedi, S., Kutcher, S. W., Chen, R., and Rosemeier, R. D., J. Cryst. Growth 198/199, 872 (1999).Google Scholar
2. Kim, K., Cho, S., Suh, J., Hong, J., and Kim, S., IEEE Trans. Nucl. Sci. 56, 858 (2009).Google Scholar
3. Zanio, K., Cadmium Telluride, Semiconductors and Semimetals, Willardson, R.K. and Beer, A.C. (Eds), vol. 13, 1978, New York, San Francisco, London, Academic Press.Google Scholar
4. James, R.B., Schlesinger, T.E., Lund, J., and Schieber, M., “Semiconductors for Room Temperature Nuclear Detector Applications”, Semiconductors and Semimetals, Vol. 43, (Academic Press, New York, 1995).Google Scholar
5. Pfann, W.G., “Zone Melting”, (New York, Wiley, 1959).Google Scholar
6. Reig, C., Munoz, V., Gomez, C., Ferrer, Ch., and Segura, A., J. Cryst. Growth 223, 349 (2001).Google Scholar
7. Carini, G. A., Camarda, G. S., Zhong, Z., Siddons, D. P., Bolotnikov, A.E., Wright, G.W., Barber, B., Arone, C., and James, R.B., J. Electro. Mater. 34, 804 (2005).Google Scholar
8. Kim, K. H., Bolotnikov, A. E., Camarda, G. S., Hossain, A., Gul, R., Yang, G., Cui, Y., James, R. B., Prochazka, J., Franc, J., and Hong, J., J. Appl. Phys. (2011) (in press).Google Scholar
9. Bolotnikov, A. E., Camarda, G. S., Carini, G. A., Fiederle, M., Li, L., McGregor, D. S., McNeil, W., Wright, G.W., and James, R. B., IEEE Trans. Nucl. Sci. 53(2), 607 (2006).Google Scholar