Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:02:27.965Z Has data issue: false hasContentIssue false

Improved Reliability With a New Plasma Nh3 Process for 0.35μιη P+ Poly-Gate Nitrided Oxide P-Mosfet's

Published online by Cambridge University Press:  10 February 2011

A. Bravaix
Affiliation:
ISEM Maison des Technologies, PI. G. Pompidou, 83000 Toulon, France.
D. Vuillaume
Affiliation:
IEMN Dept., ISEN, CNRS 9929, BP69 Av. Poincaré, 59652 Villeneuve d'Ascq cedex, France.
D. Goguenheim
Affiliation:
ISEM Maison des Technologies, PI. G. Pompidou, 83000 Toulon, France.
V. Lasserre
Affiliation:
now at MATRA MHS SA, , CP 3008 – La chantrerie, 44087, Nantes cedex, France
A. Straboni
Affiliation:
L.M.P URA 131, 40 Av. du recteur Pineau, 86022 Poitiers cedex, France, ,
M. Haond
Affiliation:
CNET France Telecom, Chemin du vieux chêne, 38243 Meylan cedex, France
Get access

Abstract

The electrical properties and the hot-carrier reliability of P+ poly-gate P-MOSFET's are investigated for advanced 0.35 μπι LDD CMOS technologies. It is shown that surface-channel p-devices with an optimized plasma NH3 nitrided gate-oxide have good barrier properties and electrical performances which lead to a higher hot-carrier immunity in 8nm thick nitrided gate-oxides than in pure oxides using DC and AC experiments. The AC stressing shows that reducing the gate-oxide thickness leads to a larger influence of electron detrapping inducing a stronger influence of donor type interface traps than the usual build-up of negative charges. These distinct degradation mechanisms are less significant in nitrided oxide p-MOSFET's due to the lower lateral electric field leading to a lower amount of trapped charges which are quickly suppressed during subsequent detrapping phases leaving the main influence of the interface traps.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hori, T., Yasui, T., Akamatsu, S.., IEEE Trans, on Electron Devices, Vol. 39, (1), 134, (1992).Google Scholar
2 Pomp, H. G., Woerlee, P.H., Woltjer, R., Paulzen, G., Lifka, H., Kuiper, A.E.T., in IEDM Tech. Dig., 463, (1993).Google Scholar
3 Bhat, M., Wristers, DJ., Han, L-K., Yan, J., Fulford, H.J., Kwong, D.L., IEEE Trans, on Electron Devices, Vol. 42 (5), 907, (1995).Google Scholar
4 Thirion, V., Baria, K., Straboni, A., in ESSDERC Proc., 411, (1993).Google Scholar
5 Baria, K., Nicolas, D., Pantel, R., Vuillermoz, B., Straboni, A., Caratini, Y., J.Appl. Phys., 68 (7), 3635, (1990).Google Scholar
6 Bravaix, A., Vuillaume, D., Goguenheim, D., Dorval, D., Haond, M., INFOS Proc., 274, (1995).Google Scholar
7 Maria, DJ., Arnold, D., Cartier, E., J. Appl. Phys. 73, 3367, (1993).Google Scholar
8 Bellens, R., Groeseneken, G., Heremans, P., Maes, H.E., IEEE Trans, on Electron Devices, Vol. 41, 1421, (1994).Google Scholar