Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-20T09:23:12.215Z Has data issue: false hasContentIssue false

Improved Monolithic Photovoltaic-Electrochromic Devices Incorporating an a-SiC:H Solar Cell

Published online by Cambridge University Press:  10 February 2011

John N. Bullock
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO, 80401.
Clemens Bechinger
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO, 80401.
Yueqin Xu
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO, 80401.
David K. Benson
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO, 80401.
Howard M. Branz
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO, 80401.
Get access

Abstract

In the tandem photovoltaic-electrochromic (PV-EC) device, a wide-gap, semitransparent, amorphous silicon-carbon alloy (a-SiC:H) photovoltaic device and an electrochromic optical transmittance modulator (EC device) are deposited sequentially to form a monolithic device on a single substrate. This device can be used as a “smart” window for active control of daylighting and building cooling load without an external electrical connection.

Last year we reported preliminary results on our development of a semi-transparent PV cell incorporating an a-SiC:H i-layer. Here we report our recent progress on the semitransparent PV component of a PV-EC device and development of a Li-based EC device that colors at voltages below 0.9 V. Finally, we discuss both recent progress and difficulties in integrating the two devices on one substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Benson, D. K. and Branz, H. M., Sol. Energy Mater. and Solar Cells 39 (1995) 203211.Google Scholar
2. Bartovics, W. A., Masters Thesis, MIT, 1984.Google Scholar
3. Reilly, S., Arasteh, D., and Selkowitz, S., Sol. Energy Mater. 22, 1 (1991).Google Scholar
4. Beni, G. and Shay, J. L., in Advances in Image Pickup and Display; Vol.5 (Academic Press, Inc., 1982), p. 83.Google Scholar
5. Selkowitz, S. and Lampert, C. M., in Large-area Chromogenics: Materials and devices for transmittance control, edited by Lampert, C. M. a. G., , C. G. (Optical Engineering Press-SPIE, Bellingham, WA, 1990), p. 504.Google Scholar
6. Branz, H. M., Crandall, R. S., and Tracy, C. E., U.S. Patent No. 5 377 037 (1994).Google Scholar
7. Bullock, J. N., Xu, Y., Benson, D. K., and Branz, H. M., Mater. Res. Soc. Proc. 377, 589594 (1995).Google Scholar
8. Bullock, J. N. and Branz, H. M., SPIE: Optical Materials Technology for Energy Efficiency and Solar Energy Conversion 2531, 152160 (1995).Google Scholar
9. Deb, S. K., Philos. Mag. 27, 801822 (1973).Google Scholar
10. Faughnan, B. W., Crandall, R. S., and Heyman, P., RCA Review 36, 177 (1975).Google Scholar
11. Rauh, R. D. and Cogan, S. F., J. Electrochem. Soc. 140, 378386 (1993).Google Scholar
12. Bechinger, C., Bullock, J. N., Zhang, J.-G., Tracy, C. E., Benson, D. K., Deb, S. K., and Branz, H. M., J. Appl. Phys., July, 1996, in press.Google Scholar