Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T02:01:54.151Z Has data issue: false hasContentIssue false

Improved Crystallinity of Zinc Sulfide Nanoparticles in Aqueous Environment

Published online by Cambridge University Press:  15 February 2011

Navendu Goswami
Affiliation:
School of Physical Sciences, Jawaharlal Nehru University, New Delhi-10067, India.
P. Sen
Affiliation:
School of Physical Sciences, Jawaharlal Nehru University, New Delhi-10067, India.
Get access

Abstract

Zinc sulfide nanoparticles, prepared employing a non-equilibrium route, are investigated for surface related effects. Water has been shown to induce a structural transformation in nanoparticles prepared this way, which is not related to their particle size. Employing Fourier transform infrared spectroscopy and x-ray powder diffraction, we show here the importance of S-H interaction in the buildup to the final ZnS structure of these nanoparticles. These particles hold promise as water sensors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zhang, H., Gilbert, B., Huang, F., and Banfield, J. F., Nature 424, 10251029 (2003).Google Scholar
2. Huang, F., Gilbert, B., Zhang, H., and Banfield, J. F., Phys. Rev. Lett. 92, 155501 (2004).Google Scholar
3. Hertl, W., Langmuir 4, 594598 (1988).Google Scholar
4. Nuth, J. A., Nature 329, 589 (1987).Google Scholar
5. Gamarnik, M.Y., Nanostruct. Mater. 7, 651 (1996).Google Scholar
6. Garvie, R. C., J. Phys. Chem. 82, 218 (1978).Google Scholar
7. McHale, J. M., Auroux, A., Perrotta, A. J., and Navrotsky, A., Science 277, 788 (1997).Google Scholar
8. Zhang, H., and Banfield, J. F., J. Mater. Chem. 8, 20732076 (1998).Google Scholar
9. Navrotsky, A., Geochim. Cosmochim. Acta 66, A548 (2002), Suppl. 1.Google Scholar
10. Ranade, M., et al. Energetics of nanocrystalline TiO2. Abstr. Pap. Am. Chem. Soc. 233, 148- Geoc Pt. 1 (2002).Google Scholar
11. Graneau, P., Phys. Lett. 97A, 253255 (1983).Google Scholar
12. Aspden, H., Phys. Lett. 107A, 238240 (1985).Google Scholar
13. Chace, W.G. and Moore, H. K. in Exploding Wires (Plenum Press, Inc., New York. Chapman & Hall, Ltd., London 1959).Google Scholar
14. Briggs, D. and Seah, M. P. in Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy (John Wiley & Sons Ltd., New York).Google Scholar
15. Kaelble, E.F. in Handbook of X-Rays (McGraw-Hill, New York, 1967).Google Scholar
16. Nakamoto, K. in Infrared spectra of Inorganic and Coordination compounds (John Wiley & Sons Ltd., New York).Google Scholar
17. Xu, C., Liu, Z., Liu, S., and Wang, G., Scripta Materialia 48, 13671371 (2003).Google Scholar