Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T02:25:05.940Z Has data issue: false hasContentIssue false

Improved Characteristic Temperature (TO) of a 1.3-μm GaInNAs/GaAs Single-Quantum-Well Laser Diode Through Thermal Annealing

Published online by Cambridge University Press:  10 February 2011

T. Kitatani
Affiliation:
RWCP Optical Interconnection Hitachi Laboratory, c/o Central Research Laboratory, Hitachi, Ltd. 1–280 Higashi-Koigakubo, Kokubunji-shi, Tokyo, 185–8601, Japan
M. Kondow
Affiliation:
RWCP Optical Interconnection Hitachi Laboratory, c/o Central Research Laboratory, Hitachi, Ltd. 1–280 Higashi-Koigakubo, Kokubunji-shi, Tokyo, 185–8601, Japan
K. Nakahara
Affiliation:
RWCP Optical Interconnection Hitachi Laboratory, c/o Central Research Laboratory, Hitachi, Ltd. 1–280 Higashi-Koigakubo, Kokubunji-shi, Tokyo, 185–8601, Japan
K. Uomi
Affiliation:
Central Research Laboratory, Hitachi, Ltd. 1–280 Higashi-Koigakubo, Kokubunji, Tokyo, 185–8601, Japan Currently with: Telecommunications System Group, Hitachi, Ltd. 216 Totsuka. Yokohama. Kanagawa, 244–8567, Japan
T. Tanaka
Affiliation:
Central Research Laboratory, Hitachi, Ltd. 1–280 Higashi-Koigakubo, Kokubunji, Tokyo, 185–8601, Japan
Get access

Abstract

Through optimal thermal annealing of the active region of a 1.3 μm GaInNAs/GaAs single-quantum-well laser diode, we obtained a characteristic temperature (T0) of 215 K under pulsed operation from 20°C to 80°C. This is the highest yet reported value for a 1.3-μm semiconductor laser. Even under continuous-wave operation, the T0 was as high as 147 K. The lasing-wavelength change with temperature was as small as 0.39 nm/°C, indicating the excellent stability for a GalnNAs laser diode with T0 of over 200 K. These results demonstrate that GaInNAs is a promising material for fabricating long-wavelength laser diodes used for opticalfiber communications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. M. Kondow. Uomi, K.. Niwa, A., Kitatani, T., Watahiki, S. and Yazawa, Y., Jpn. J. Appl. Phys. 35, 1273(1996).Google Scholar
2. Kondow, M., Nakatsuka, S., Kitatani, T., Yazawa, Y. and Okai, M., Electro. Lett. 32, 2244(1996)Google Scholar
3. Nakahara, K., Kondow, M., Kitatani, T., Larson, M. C. and Uomi, K.. Photonic Technol. Lett. 10, 487(1998).Google Scholar
4. Kitatani, T., Kondow, M., Nakahara, K., Larson, M. C. and Uomi, K.. Optic. Rev. Lett. 5, 69(1998)Google Scholar
5. Sato, S.. Osawa, Y. and Saitoh, T., Jpn. J. Appl. Phys. 36, 2671(1997).Google Scholar
6. Sato, S. and Satoh, S.. Electro. lett. 35. 1251 (1999).Google Scholar
7. Pan, Z., Miyamoto, T., Schlenker, D.. Koyama, F. and Iga, K., Jpn. J. Appl. Phys. 38 1012 (1999).Google Scholar
8. Moto, A., Tanaka, S.. Ikoma, N.. Tanabe, T., Takagishi, S., Takahashi, M. and Katsuvama, T., Jpn. J. Appl. Phys. 38, 1015(1999).Google Scholar
9. A. Ougazzaden. E. V. K. Rao. Sermage, B.. Leprince, L. and Gauneaut, M., Jpn. J. Appl. Phys. 38. 1019(1999).Google Scholar
10. Kitatani, T.. Nakahara, K., Kondow, M.. Uomi, K. and Tanaka, T.. to be published in I. Cryst. Growth.Google Scholar
11. Higashi, T., Yamamoto, T. and Ogita, S.. IEEE LEOS '96, Boston. MA3 (1996)Google Scholar