Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T05:16:24.175Z Has data issue: false hasContentIssue false

Improved Biphasic Pulsing Power Efficiency with Pt-Ir Coated Microelectrodes

Published online by Cambridge University Press:  28 February 2014

Artin Petrossians
Affiliation:
Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California, USA Department of Ophthalmology, University of Southern California, Los Angeles, California, USA
Navya Davuluri
Affiliation:
Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
John J. Whalen III
Affiliation:
Department of Ophthalmology, University of Southern California, Los Angeles, California, USA
Florian Mansfeld
Affiliation:
Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California, USA
James D. Weiland
Affiliation:
Department of Ophthalmology, University of Southern California, Los Angeles, California, USA Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
Get access

Abstract

Neuromodulation devices such as deep brain stimulators (DBS), spinal cord stimulators (SCS) and cochlear implants (CIs) use electrodes in contact with tissue to deliver electrical pulses to targeted cells. In general, the neuromodulation industry has been evolving towards smaller, less invasive devices. Improving power efficiency of these devices can reduce battery storage requirements. Neuromodulation devices can realize significant power savings if the impedance to charge transfer at the electrode-tissue interface can be reduced. High electrochemical impedance at the surface of stimulation microelectrodes results in larger polarization voltages. Decreasing this polarization voltage response can reduce power required to deliver the current pulse. One approach to doing this is to reduce the electrochemical impedance at the electrode surface. Previously we have reported on a novel electrochemically deposited 60:40% platinum-iridium (Pt-Ir) electrode material that lowered the electrode impedance by two orders of magnitude or more.

This study compares power consumption of an electrochemically deposited Pt-Ir stimulating microelectrode to that of standard Pt-Ir probe microelectrode produced using conventional techniques. Both electrodes were tested using in-vitro in phosphate buffered saline (PBS) solution and in-vivo (live rat) models.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Loeb, G.E., Ann. Rev. Neurosci., 13 (1990).CrossRefGoogle Scholar
Tan, C.T., Guo, B., Martin, B. and Svirsky, M., J. Acoustical Soc. Amer., 131 (2012).Google Scholar
Rodriguez-Oroz, M. C., Obeso, J. A., Lang, A. E., Houeto, J.-L., Pollak, P., Rehncrona, S., Kulisevsky, J., Albanese, A., Volkmann, J., Hariz, M. I., Quinn, N. P., Speelman, J. D., Guridi, J., Zamarbide, I., Gironell, A., Molet, J., Pascual-Sedano, B., Pidoux, B., Bonnet, A. M., Agid, Y., Xie, J., Benabid, A.-L., Lozano, A. M., Saint-Cyr, J., Romito, L., Contarino, M. F., Scerrat, M., Fraix, V. and Van Blercom, N., Brain, 120, 10 (2005).Google Scholar
Cameron, T., J. Neurosurg. Spine, 100, 3 (2004).CrossRefGoogle Scholar
Rauch, S.L., Dougherty, D.D., Malone, D., Rezai, A., Friehs, G., Fischman, A.J., Alpert, N. M., Haber, S. N., Stypulkowski, P H., Rise, M. T., Rasmussen, S.A., and Greenberg, B.D.., J. Neurosurgery. 104, 4 (2006).CrossRefGoogle Scholar
Mayberg, H.S., Lozano, A.M., Voon, V., McNeely, H.E., Seminowicz, D., Hamani, C., Schwalb, J.M. and Kennedy, S.H., Neuron. 45, 5 (2005).CrossRefGoogle Scholar
Laxton, A.W., Tang-Wai, D.F., McAndrews, M.P., Zumsteg, D., Wennberg, R., Keren, R., Wherrett, J., Naglie, G., Hamani, C., Smith, G.S. and Lozano, A.M., Ann Neurol. 68, 4 (2010).CrossRefGoogle Scholar
Leone, M., Franzini, A., Broggi, G. and Bussone, G., Neurol. Sci. 24, 2 (2003).Google Scholar
Leone, M., Lancet Neurology, 5, 10 (2006).CrossRefGoogle Scholar
Kelly, S.K., Wyatt, J.L. Jr., IEEE Trans. Biomed. Circuits and Systems, 5, 1 (2011).CrossRefGoogle Scholar
Petrossians, A., Whalen, J.J., Weiland, J.D. and Mansfeld, F. J. Electrochem.Soc. 5, 158 (2011).Google Scholar
Cogan, S.F., Ann. Rev. Biomed. Eng., 10 (2008).CrossRefGoogle Scholar
Weiland, J.D., Anderson, D.J. and Humayun, M.S., IEEE Trans. Biomed. Eng., 49, 12 (2002).CrossRefGoogle Scholar
Whalen, J.J.. Young, J., Weiland, J.D. and Searson, P.C., J. Electrochem Soc., 135 (2006).Google Scholar
Zhou, D. and Greenberg, R.. “Microelectronic Visual Prostheses,” Implantable Neural Prostheses 1. Devices and Applications, Volume 1. Biological and Medical Physics, Biomedical Engineering, ed. Zhuo, D. and Greenbaum, E. (Springer, 2009) pp. 142.Google Scholar
Venkatraman, S., Hendricks, J., King, A.A., Sereno, A.J., Richardson-Burns, S., Martin, D. and Carmena, J.M., IEEE Trans. Neural Sys. Rehab. Eng., 19, 3 (2011).Google Scholar
Colodetti, L., Weiland, J.D., Colodetti, S., Ray, A., Seiler, M.J., Hinton, D.R. and Humayun, M.S., Exp. Eye Res. 85 (2007).CrossRefGoogle Scholar
Ray, , Colodetti, L., Weiland, J.D., Hinton, D.R., Lee, E. and Humayun, M.S., Brain Res. 1255 (2009)CrossRefGoogle Scholar
Holt-Hindle, P., Yi, Q., Wu, G., Koczkur, K. and Chen, A., J. Electrochem. Soc., 155 (2008).CrossRefGoogle Scholar
Chan, L.H., Lee, E., Humayun, M.S. and Weiland, J.D., J. Neurophys. 105, 6 (2011).CrossRefGoogle Scholar
de Balthasar, C., Patel, S., Roy, A., Freda, R., Greenwald, S., Horsager, A., Mahadevappa, M., Yanai, D., McMahon, M. J., Humayun, M.S., Greenberg, R.J., Weiland, J.D. and Fine, I., Invest. Ophthalmol. Vis. Sci. 49, 6 (2008).CrossRefGoogle Scholar