Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-09-12T07:27:33.509Z Has data issue: false hasContentIssue false

The Importance of Transuranium Solids in Solubility Studies for Nuclear Waste Repositories

Published online by Cambridge University Press:  25 February 2011

Heino Nitsche*
Affiliation:
Lawrence Berkeley Laboratory, Earth Sciences Division, 1 Cyclotron Road, Mail Stop 70A- 1150, Berkeley. California 94720
Get access

Abstract

Solids obtained from laboratory solubility experiments in two different groundwaters from the Yucca Mountain region, Nevada, are described. The solubility study provided limiting solubility concentrations for neptunium(V), plutonium(IV), and americium(III) in groundwaters from Wells J-13 and UE-25p#l. The solubility-controlling solids are compared to relevant radionuclide compounds that are reported in the literature. The preparations and some characteristics of published solids that possibly may form in actinide-groundwater systems are described. The solids formed in the experiments are sodium neptunium(V) carbonates, polymeric Pu(IV) that contained small amounts of carbonate, and hexagonal or orthorhombic americium(III) hydroxycarbonates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nuclear Waste Policy Act (Section 113) Site Characterization Plan, Yucca Mountain Site, Nevada Research and Development Area, Nevada, U.S. Department of Energy, Office of Civilian Radioactive Waste Management, Washington, D.C. (1988).Google Scholar
2. Nitsche, H., “Solubility Studies of Transuranium Elements for Nuclear Waste Disposal: Principles and Overview,” Radiochim. Acta 52,53, 38 (1991).Google Scholar
3. Nitsche, H., Basic Research for Assessment of Geologic Nuclear Waste Repositories: What Solubility and Speciation Studies of Transuranium Elements Can Tell Us. Mat. Res. Soc. Symp. Proc., Vol. 212, Materials Res. Soc., 517529 (1991).CrossRefGoogle Scholar
4. Nitsche, H., Lee, S.C., and Gatti, R.C., “Determination of Plutonium Oxidation States at Trace Levels Pertinent to Nuclear Waste Disposal,” J. Radioanal. Nucl. Chem. 124(1), 171185 (1988).CrossRefGoogle Scholar
5. Tucker, D.B., Standifer, E.M., Nitsche, H., and Silva, R.J., “Data Acquisition and Feedback Control System for Solubility Studies of Nuclear Waste Elements,” Lanthanide and Actinide Research 2, 279287 (1988).Google Scholar
6. Nitsche, H. and Edelstein, N.M., “Solubilities and Speciation of Selected Transuranium Ions. A Comparison of a Non-Complexing Solution with a Groundwater from the Nevada Tuff Site,” Radiochim. Acta 39, 23 (1985).CrossRefGoogle Scholar
7. Nitsche, H., Müller, A., Standifer, E.M., Deinhamer, R.J., Becraft, K., Prussin, T., and Gatti, R.C., “Dependence of Actinide Solubility and Speciation on Carbonate Concentration and Ionic Strength in Groundwater,” Proceedings, Third International Conference on Chemistry and Migration Behavior of Actinides and Fission Products in the Geosphere, October 1991, Jerez de la Frontera, Spain, Radiochim. Acta, in press.Google Scholar
8. Daniels, W.R. et al. , Summary Reort on the Geochemistry of Yucca Mountain and Environs, report La-9328-MS, Los Alamos National Laboratory, New Mexico (1982).CrossRefGoogle Scholar
9. Ogard, A.E. and Kerrisk, J.F., Groundwater Chemistry Along the Flow Path between a Proposed Repository Site and the Accessible Environment, Report LA-10188-MS, Los Alanmos National Laboratory, New Mexico (1984).CrossRefGoogle Scholar
10. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York, NY (1986).Google Scholar
11. Jones, L.H. and Penneman, R.A., “Infrared Spectra and Structure of Uranyl and Transuranium (V) and (VI) Ions in Aqueous Perchloric Acid Solution,” J. Chem. Phys. 21, 542 (1952).CrossRefGoogle Scholar
12. Volkov, Y.F., Visyashcheva, G.I., and Kapshukov, I.I., “Study of Carbonate Compounds of Pentavalent Actinides with Alkali Metal Cations. V. Production and Identification of Hydrate Forms of Sodium Monocarbonato-neptunylate,” Sov. Radiochem. (Eng. transl.) 19, 263266 (1977).Google Scholar
13. Volkov, Y.F., Tomilin, S.V., Visyashcheva, G.I., and Kapshukov, t.I., “Carbonate Compounds of Pentavalent Actinoids with Alkali-Metal Cations. VI. X-Ray Structure Analysis of LiNpO2CO3 and NaNpO2CO3 ,” Sov. Radiochem. (Eng. transl.) 21, 579583 (1979).Google Scholar
14. Volkov, Y.F., Visyashcheva, G.I., Tomilin, S.V., Kapshukov, I.I., and Rykov, R.G., “Study of Carbonate Compounds of Pentavalent Actinides with Alkali-Metal Cations. VIII. Synthesis and X-Ray Diffraction Investigation of Several Compounds of Neptunium(V) with Sodium and Rubidium,” Sov. Radiochem. (Eng. transl.) 23, 191195 (1981).Google Scholar
15. Volkov, Y.V., Visyashcheva, G.I., Tomilin, S.V., Spiryakov, V.I., Kapshukov, I.I., and Rykov, A.G., “Carbonate Compounds of Pentavalent Actinides with Alkali Metal Cations VII. Synthesis and Crystal Structure of Hydrate Compounds with the Composition Nao.6NpO2(CO3)0.8- nH20 ,” Sov. Radiochem. (Eng. transl.) 21, 583590 (1979).Google Scholar
16. Nigon, J.P., Penneman, R.A., Staritzky, E., Keenan, T.K. and Asprey, L.B., “Alkali Carbonates of Np(V), Pu(V) and Am(V),” J. Phys. Chem. 58, 403404 (1954).Google Scholar
17. Keenan, T.K. and Kruse, F.H., “Potassium Double Carbonates of Pentavalent Neptunium, Plutonium, and Americium,” Inorg. Chem. 3, 1231 (1964).Google Scholar
18. Visyashcheva, G.I., Volkov, Yu. F., Simakin, G.A., Kapshukov, I.I., Bevz, A.S., and Yakolev, G.N., “Carbonate Compounds of Pentavalent Actinides with Alkali Metal Cations. I. Composition and Some Properties of Solid Carbonates of Pentavalent Neptunium with Potassium Obtained from K2CO3 Solution,” Sov. Radiochem. (Eng. transl.) 16(6), 8328591 (1974).Google Scholar
19. Simakin, G.A., Volkov, Yu. F., Visyashcheva, G.I., Kapshukov, I.I., Baklanova, P.F., and Yakovlev, G.N., “Carbonate Compounds of Pentavalent Actinides with Alkali Metal Cations. II. Preparation of Carbonate Compounds of Np(V), Pu(V), and Am(V) from K2CO3 Solutions by Electrochemical Reduction of Hexavalent Ions,” Soy. Radiochem. (Eng. transl.) 16(6), 838841 (1974).Google Scholar
20. Volkov, Yu. F., Kapshukov, I.I., Visyashcheva, G.I., and Yakolev, G.N., “Carbonate Compounds of Pentavalent Actinides with Alkali Metal Cations. IV. X-Ray Investigation of Dicarbonates of Neptunium(V), Plutonium(V), and Americium(V) with Potassium,” Sov. Radiochem. (Eng. transl.) 16(6), 846850 (1974).Google Scholar
21. Fahey, J.A., The Chemistry of the Actinides, Vol. 1, Katz, J.J., Seaborg, G.T., and Morss, L.R., eds., 456457, Chapman and Hall, New York, NY (1986).Google Scholar
22. Cohen, D. and Walter, A.J., “Neptunium Pentoxide,” J. Chem. Soc., 26962699 (1964).Google Scholar
23. Keller, C., Koch, L., and Walter, K.H., “Die Reaktion der Oxide der Transurane mit Alkalioxiden-I Ternlre Oxide der Sechswertigen Transurane mit Lithium und Natrium,” J. Inorg. Nucl. Chem. Vol. 27, 12051223 (1965).CrossRefGoogle Scholar
24. Maya, L., “Hydrolysis and Carbonate Complexation of Dioxoneptunium(V) in 1.0 M HClO4 at C,” Inorg. Chem., 20932095 (1983).Google Scholar
25. Grenthe, I., Robouch, P., and Vitorge, P., “Chemical Equilibria in Actinide Carbonate Systems,” J. Less-Common Metals 122, 225231 (1986).Google Scholar
26. Seaborg, G.T., Katz, J.J., and Manning, W.M., The Transuranium Elements, Part II, p. 1443, McGraw-Hill, 1949.Google Scholar
27. Bagnall, K.W. and Laidler, J.B., “Neptunium and Plutonium Trioxide Hydrates,” J. Chem. Soc., 26932696 (1964).Google Scholar
28. Ellinger, F.H. and Zachariasen, W.H., “The Crystal Structure of KPuO2CO3, NH4PuO2 CO3 and RbAmO2CO3 ,” J. Phys. Chem. 58,405408 (1954).Google Scholar
29. Navratil, J. and Bramlet, H.L., “Preparation and Characterization of Plutonyl(VI) Carbonate,” J. Inorg. Nucl. Chem. 35, 157163 (1973).Google Scholar
30. Toth, L.M. and Friedman, H.A., “The IR Spectrum of Pu(IV) Polymer,” J. lnorg. Nucl. Chem. 40, 807 (1978).CrossRefGoogle Scholar
31. Newton, T.W., Los Alamos National Laboratory, private communication (1985).Google Scholar
32. Pdrez-Bustamente, J.A., “Solubility Product of Tetravalent Plutonium Hydroxide and Study of Amphoteric Character of Hexavalent Plutonium Hydroxide,” Radiochim. Acta 4, 6775 (1965).CrossRefGoogle Scholar
33. Rai, D., Serne, R.J., and Moore, D.A., Sol. Sci. Soc. Am. J. 40,490 (1980).Google Scholar
34. Lierse, Ch. and Kim, J.I., Chemical Behavior of Plutonium in Natural Aguatic Systems: Hydrolysis, Carbonate Complexation and Redox Reactions, Report RCM 02286, Technical University, Munich, pp. 234 (1986).Google Scholar
35. Kim, J.I. and Kanellakopulos, B., “Solubility Products of Plutonium(IV) Oxide and Hydroxide,” Radiochim. Acta 48, 145150 (1989).Google Scholar
36. Baes, C.F. Jr., and Mesmer, R.E., The Hydrolysis of Cations, p. 189, Krieger Publ. Co., Florida (1986).Google Scholar
37. Kim, J.I. in: Handbook of the Physics and Chemistry of the Actinides, A.J. Freeman and Keller, C., eds., “Chemical Behavior of Transuranic Elements in Natural Aquatic Systems,” Chapter 8, 1986.Google Scholar
38. Katz, J.J., Seaborg, G.T., and Morss, L.R., The Chemistry of the Actinide Elements, 2nd ed., Vol. 2, Chapman Hall, 1986.Google Scholar
39. Holley, C.E. Jr., private communication in reference 35.Google Scholar
40. Dexpert, H. and Caro, P., “Determination de la Structure Cristalline de la Variete à des Hydroxycarbonates de Terres Rares LnOHCO3 (Ln = Nd),” Mat. Res. Bull. 9, 15771586 (1974).Google Scholar
41. Christensen, A.N., “Hydrothermal Preparation of Neodymium Oxide Carbonate,” Act. Chem. Scand. 24, 24402446 (1970).Google Scholar
42. Silva, R.J. and Nitsche, H., “Thermodynamic Properties of Chemical Species of Waste Radionuclides,” Report NUREG/CP-0052, U.S. Nuclear Regulatory Commission, Washington, D.C. (1983).Google Scholar
43. Runde, W., Meinrath, G., and Kim, J.I., “A Study of Solid-Liquid Phase Equilibria of Trivalent Lanthanide and Actinide Ions in Carbonate Systems,” Proceedings, Third International Conference on Chemistry and Migration Behavior of Actinides and Fission Products in the Geosphere, October 1991, Jerez de la Frontera, Spain, Radiochim. Acta, in press.Google Scholar
44. Standifer, E.M. and Nitsche, H., “First Evidence of Hexagonal AmOHCO3 ,” Lanthanide and Actinide Research 2, 383384 (1988).Google Scholar
45. Kerrisk, J.F. and Silva, R.J., A Consistent Set of Thermodynamic Constants for Americium(III) Species with Hydroxyl and Carbonate, Proceedings, Workshop on Geochemical Modeling, CONF-8609134, Lawrence Livermore National Laboratory, Livermore, California (1986).Google Scholar
46. Felmy, A.R., Rai, D., and Fulton, R.W., “The Solubility of AmOHCO3(c) and the Aqueous Thermodynamics of the System Na+ - Am3+ - HCσ- -CO3 2- OH- - H2O,” Radiochim. Acta 50, 193204 (1990).CrossRefGoogle Scholar
47. Silva, R.J., “Thermodynamic Properties of Chemical Species in Nuclear Waste. Topical Report. The Solubilities of Crystalline Neodymium and Americium Trihydroxides,” Report LBL-15055, Lawrence Berkeley Laboratory, Berkeley, California (1982).Google Scholar